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Introduction

1.1 Cavitation and sonochemistry: a brief overview

The word “cavitation” comes from the Latin word “cavus”, hollow, and it was first
coined by R. E. Froude. Cavitation is the creation of cavities inside a liquid, as a
consequence of an abrupt decrease of the cohesive forces of the liquid itself, due to
a rapid pressure drop. Although the phenomenon was already predicted by Euler in
1754 [1], the first real investigation dates back to 1895, when British torpedo boats
were found to suffer from erosion and vibration associated with bubble formation
[2]. The problem was temporarily solved by using slower and bigger propellers, but
it came again to the attention in 1904, with the increase of propellers velocity. On
request of the Royal Navy, Lord Rayleigh started to investigate the phenomenon and
developed his pioneer work on the problem of the collapse of an empty cavity inside
a liquid [3], thus providing the theoretical foundation for cavitation studying.

Some of the systems commonly adopted to induce cavitation are: the generation
of a water flow through a local constriction, fast rotating propellers, the introduction
of superheated steam into water and ultrasound driving. In the present work we will
focus on the latter. Ultrasound is sound with a frequency above the human hear-
ing threshold (20 kHz). Sound is constituted by rarefaction and compression waves
through a medium. In an ultrasonic apparatus this pressure wave is generated by
means of a transducer, a device that converts one form of energy (e.g. electrical) to
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Figure 1.1: Radial dynamics (blue) of a bubble undergoing non-linear oscillations
and the driving pressure (red). Parameters: Rp =5 um, P, = 1.3 bar, f =20 kHz

another (e.g. mechanical). The response of a bubble undergoing an acoustic forc-
ing is governed by the well-known Rayleigh-Plesset equation [4, 5] and it can be
of two different kinds, qualitatively speaking. For low driving amplitudes the bub-
ble oscillates gently, like a harmonic oscillator (non-inertial cavitation) while, as the
driving pressure increases and the dynamic Blake threshold is overcome [4, 6], it
exhibits a nonlinear behavior (inertial cavitation). An example of a bubble undergo-
ing nonlinear oscillations is shown in Fig.1.1. A first initial expansion is produced
in the negative pressure phase, then followed by an abrupt collapse, similar to the
Rayleigh collapse [3] as the pressure increases halting the expansion, and by a series
of damped rebounces with essentially the eigenfrequency of the bubble (Minnaert
frequency [4, 7]). The abrupt collapse is associated with a huge energy focusing and
with a sudden temperature increase, as the heat has no time to escape from the bubble
and the process is almost adiabatic. Many interesting phenomena are associated to
such an energy focusing: shock waves [8], jets (when the collapse happens next to
a surface) [9, 10], emission of light (sonoluminescence) [11] and chemical reactions
(sonochemistry) [12].

The chemical effects of ultrasound were reported for the first time by Wood and
Loomis in 1927 [13], but the topic was then set aside for the following 50 years. It
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came to a renewed attention to the scientific community when inexpensive and reli-
able high-intensity ultrasound laboratory equipment started to appear, in the 1980s,
with ultrasonic cleaning baths.

As a general definition, sonochemistry is the use of cavitation for achieving a
chemical conversion. Chemical effects of cavitation can take place in different re-
gions: in the liquid bulk, due to mechanical effects of the shear forces created by
the shockwave at collapse [14] (mixing and suspended particle fragmentation), in-
side the bubble, which acts as a microreactor, and in the liquid shell around it. As we
showed before, implosion of microbubbles (5-20 um in size) can generate localized
extreme temperatures of 10000 K and pressures up to 1000 bar, the conditions of the
surrounding liquid remaining ambient [14—19]. Therefore high temperature chemi-
cal conversions can occur at ambient conditions, thus giving origin to highly reactive
radical species. For example, when the liquid is water, HO vapor is present inside
the bubble. Its dissociation creates OH, O and H radicals, H,O, and O3. These chem-
ical products then diffuse outside the bubble, dissolving in the surrounding liquid and
easily oxidizing solutes. If volatile solutes are dissolved in the liquid, they enter the
bubbles by evaporation and they are dissociated as well [20]. The reaction products
can be used for synthesis of fine chemicals, food ingredients or pharmaceuticals, for
degradation of water contaminants [21-24], for textile processing [25] or for cells
disruption [26].

However, despite its vast potentiality, industrial application of sonochemistry has
always been limited both by the difficulty of controlling the process and the energy
inefficiency of large scale sonochemical reactors. In sonochemical devices, energy
losses are difficult to prevent due to insufficient focus of energy transfer to the mi-
crobubble and to the bubble/bubble and bubble/wall interactions. Moreover ero-
sion of the sonicator surfaces can emerge at the high operating power required for
industrial-scale applications.

Sonochemical reactors currently developed are of two types: horn-type and stand-
ing wave-type. In horn-type reactors (Fig. 1.2a), an ultrasonic horn is immersed
inside the liquid container and it radiates a quasi-spherical wave; thus a cloud of bub-
bles form around it. The driving pressure amplitude near the horn tip can reach values
up to 10 atm [27], but it considerably decays and eventually vanishes as the distance
from the horn tip increases. In standing wave reactors (Fig. 1.2b), the transducer is
glued to the external surface of the container, either on the bottom or on the side
walls, and it generates a standing wave inside the liquid. When the piezo is glued at
the bottom (as in Fig. 1.2b), a pressure node will be located at the air-liquid interface.
In this kind of reactors, the driving pressure amplitude is typically much lower than
in horn reactors. Moreover, at high driving amplitude, the bubbles neither nucleate
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Figure 1.2: Different kinds of sonochemical reactors: horn-type reactor (a) and stand-
ing wave reactor (b).
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Figure 1.3: New efficient sonochemical microreactor of the kind described in Ref.[28,
29], based on the heterogeneous nucleation of bubbles from micromachined crevices
over a silicon substrate
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nor gather where the pressure amplitude is maximal (antinodal planes), as ex-
pected, but tend to nucleate nearby the nodal planes and to cluster at regions in be-
tween the nodal and the antinodal planes, forming “jellyfish” structures [30].

When the project started, the challenge was to gain full control over the cavita-
tion process and to improve the energy efficiency of the process, by miniaturizing
sonochemical reactors. The leading idea was to increase the number of produced
bubbles without loosing control of the process. It is known that cavitation can be
favored by the presence of “weaknesses” inside the liquid (nucleation sites), where
the tensile strength is lower. In the case of homogenous nucleation these weak points
originate from thermal fluctuations, while in the case of heterogeneous nucleation,
they originate from solid-liquid interfaces. Crevices, either on surfaces or on dis-
persed impurities, can entrap gas pockets thus favoring cavitation [7]. Bremond et al.
[31, 32] showed that artificial crevices (pits) micromachined over a silicon surface
can produce stable and monodisperse cavitation nuclei. Using this idea, Fernandez
Rivas et al [29, 33] developed a new kind of sonochemical microreactor of the stand-
ing wave type, where a silicon substrate with artificial micropits was placed at the
bottom of the liquid cuvette (see Fig.1.3). Investigation with luminol showed that
the bubbles ejected from the acoustically driven micropits were chemically active, as
they produced OH radicals which reacted with luminol giving origin to light emis-
sion, process know as sonochemiluminescence (SCL) [34] (Fig. 1.4). This reactor
presented an increase of the chemical yield of a factor 10 respect to the equivalent
preexisting immersed-bath reactors and it currently represents the state of the art
[29]. The present work is intended as a theoretical studying of that device, whose
experimental investigation has been addressed in Ref. [28]. Some extensions to more
fundamental aspects have also been addressed.

1.2 Guide through the chapters

The chemical reactivity depends on a number of experimentally tunable parameters,
such as frequency, driving pressure, kind of solvent, liquid temperature, hydrostatic
pressure and saturation conditions of the liquid. When one wishes to develop a com-
prehensive parametric study of the radical production, a full model would result rather
complex and computationally expensive. Even neglecting the bubble-bubble interac-
tion, i.e. in the case of single-bubble sonoluminescence, a complete description of
the process should take into account spatial pressure and temperature distribution,
mass and heat diffusion, evaporation/condensation phenomena, change in transport
parameters due to thermal and compositional changes of the mixture, inertial effects
and chemical reactions. Therefore the need of simplification.
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Figure 1.4: Area of enhanced radical production around one pit of a new reactor of
the kind of Fig.1.3 [29]. The blue areas are produced by the light emission of luminol,
reacting with the OH radicals generated at bubble collapse (sonochemiluminescence,
SCL). Reproduced with permission from Ref.[28].

In Chap. 2, we validate a simplified ODE model for single-bubble sonolumi-
nescence [35-37], based on the boundary layer assumption, by comparing it with a
complete PDE model solving the heat advection-diffusion equation [38, 39]. While
the latter takes into account the temperature field both outside and inside the bub-
ble, the simplified model considers the bubble as thermally uniform. We focus on
the peaks of temperatures and heat fluxes, because this is what governs the chemical
kinetics, through Arrhenius law.

In Chap. 3, we characterize the sonochemical reactor described in Ref. [33], by
means of the radial evolution of the bubble population that it produces. Using the
simplified model validated in Chap.2, we evaluate immeasurable experimental pa-
rameters such as the pressure and we estimate the radical production in different
configurations.
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In Chap. 4, we develop a parametric studying of the single-bubble radical pro-
duction, by means of the simplified model validated in Chap. 2. We consider the case
of transient cavitation, in order to match the experimental conditions of the reactor of
Ref. [29, 33], where the bubbles were found to survive only few cycles due to abrupt
splitting and recombination phenomena. In particular, we investigate the role of the
frequency, the driving amplitude, the liquid temperature and the kind of gas dissolved
inside the liquid, providing optimal working ranges. We also provide a further valida-
tion to the model, reproducing the explosive well known behavior of stoichiometric
mixtures of Hy and O,.

In view of a future extension of the complete PDE model developed in Chap. 2,
including both thermal and mass diffusion, evaporation and chemical reactions, in
Chap. 5 we develop a model for bubbles growing by mass diffusion. We validate it
comparing it both with the analytical solution in a test case and with experimental
results regarding the growth of a diffusive a bubble attached to a pit. In order to
compare the numerical results with the experimental ones, a geometrical correction
is introduced to keep into account the disruption of the boundary layer due to the
presence of the wall.

In Chap. 6 we develop a PDE model for vapor bubbles including both thermal and
mass diffusion inside the liquid, verifying that, in the limiting case of pure mass dif-
fusion, it gives the same results of the model of Chap. 5. We validate it by comparison
with results from an acoustic droplet vaporization (ADV) experiment. In particular,
we study the time evolution of an ultrasound driven vapor bubble of perfluoropentane
(PFP) inside a droplet of the same liquid, immersed in a water medium superheated
respect to the PFP boiling point. We show the fundamental role of gas diffusion in
order to prevent the bubble recondensation at collapse.

In Chap. 7 we study the oscillations of a gas pocket trapped inside a micropits
of the kind used in the reactor of Chap. 3. We develop a code based on the level
set approach [40], to track the meniscus dynamics. In order to validate the pressure
field evolution, we calculate the analytical solution of a mixed boundary problem,
in the test case of flat meniscus, and we verify that it is in good agreement with the
numerical results. We additionally validate the code against the analytic solution
calculated by Gelderblom et al, in the limiting case of Stokes and potential flow
[41]. We address both the free and the forced oscillations of the meniscus, both far
and close to a wall, deriving the eigenfrequency and the damping coefficient of the
trapped gas pocket.

In Chap. 8 we investigate the collective behaviors of the bubble clusters origi-
nating in the microreactor of Chap. 3, by incorporating the effect of the secondary
Bjerknes forces inside the simplified model that we validated in Chap. 2. We study
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the transition between the different observed behaviors: clusters sitting upon their
own pits, clusters pointing towards each other and clusters migrating towards the
center point of the pit array. This last behavior is particularly undesired in sono-
chemical reactors as it was showed to be associated to lower chemical yields (see
Chap. 3). We correlate the transition with different parameters, such as the size of
clusters, the number and size of the bubbles, the driving pressure and the distance be-
tween the pits. We also show how the radical production is affected by the Bjerknes
forces, providing a possible explanation of the observed phenomenon for which high
applied powers do not improve the radical production, but sometimes even reduce it
[33].

Chap. 9 forms the conclusion. It summarizes the modelling work which has been
done, stressing the complexity of the investigated problem and the limitations of the
adopted assumptions, but also the achieved milestones.
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Thermal models for acoustically driven

bubbles *

The chemical production of radicals inside acoustically driven bubbles is determined
by the local temperature inside the bubbles. Therefore, modelling of chemical reac-
tion rates in bubbles requires an accurate evaluation of the temperature field and the
heat exchange with the liquid. The aim of the present work is to compare a detailed
PDE model in which the temperature field is spatially resolved with an ODE model in
which the bubble contents are assumed to have a uniform average temperature and
the heat exchanges are modelled by means of a boundary layer approximation. The
two models show good agreement in the range of pressure amplitudes in which the
bubble is spherically stable.

2.1 Introduction

In acoustically driven microbubbles extreme conditions of temperature and pressure
can emerge, giving rise to chemical reactions, involving the gas inside the bubbles
and the surrounding liquid (“sonochemistry”, see e.g. refs. [1-6]). Even without

“Published as: [Laura Stricker, Andrea Prosperetti and Detlef Lohse, Validation of an approximate
model for the thermal behavior in acoustically driven bubbles, J. Acoust. Soc. Am., 130(5) SI, 3243-
3251, DOI: 10.1121/1.3626132, Part 2, 2011].

13
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bubble-bubble interaction — i.e. in the case of a single isolated acoustically trapped
bubble as in single-bubble sonoluminescence [7—11] — the fluid- and thermodynamics
is still rather complex. Even if such a bubble remains spherical (i.e., is small enough
and weakly enough driven), a complete description of the process still must take
into account spatial pressure and temperature distribution both inside and outside
the bubble, mass and heat diffusion, evaporation/condensation phenomena, change
in transport parameters due to thermal and compositional changes of the mixture,
inertial effects, as well as all chemical reactions of the unstable species in the bubble.
Various models with an increasing degree of sophistication exist, see e.g. refs. [12—
20] and for a review ref. [11]. Clearly, the complexity of the process implies the need
of simplifications when addressing practical problems, such as studying the chemical
output.

In this paper we focus on the thermal behavior (achieved temperatures, heat
fluxes in and out of the bubble), which governs the chemical reactions by Arrhenius’
law. We want to compare the results from the numerical solutions of the advection-
diffusion PDE for the temperature field inside the bubble as described by Prosperetti
and coworkers [12, 21] and others [22-24] with the results from a thermal boundary
layer approximation of the full dynamics, which leads to the ODE model which has
been developed in Twente [19, 20, 25]. As such ODE models are computationally
much cheaper than solving the full PDEs of the gas flow inside the bubble, they are
highly desirable in order to get a quick overview on the thermal conditions inside
the bubble and the resulting chemical reactions. However, such simplifying ODE
models must be verified against the results from the solution of the full PDEs. Such
a verification is the aim of the present paper. From a sonochemical point of view,
there is a temperature range where the radical production is optimal, regardless of
the ambient pressure [26]. Therefore a precise determination of applicable limits
of ODE-type approximations plays a crucial role in correct quantitative estimates of
production/destruction of radicals.

ODE type approximations of the gas dynamics inside acoustically driven bub-
bles have a tradition, see the reviews [11, 27-29]. A first attempt was the adop-
tion of the adiabatic approximation for the gas transformation with artificial increase
of the liquid viscosity [30], in order to keep into account the energy loss and the
subsequent thermal damping. However, this solution was found unsatisfactory, as
it overestimated the damping of non linear oscillations, especially the first nonlin-
ear resonant peak. A second attempt was to consider a gas transformation with
a variable isoentropic index k(¢), depending on the instantaneous Peclet number
Pe(t) = |R(t)|R5/R(t)Dgy(t) [12, 31, 32], but also this model had strong limitations
[33], as it was based on linear oscillation approximation and it could not include the
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effects of subharmonic components in the response. Nonetheless, it has succesfully
been used in the context of single bubble sonoluminescence [13, 14, 18, 24, 34, 35],
often even only with an effective polytropic exponent.

In the present work we use the ODE model based on the thermal boundary layer
approximation of refs. [19, 20, 25]. It will be described in detail in section 8.2.
Roughly speaking, this ODE model includes the Rayleigh-Plesset equation for the
radial dynamics of the bubble, van der Waals law for the inner pressure, and the
energy equation for the temperature, where the heat flux is estimated from a boundary
layer approximation.

The PDE model, also described in detail in section 8.2, includes the Rayleigh-
Plesset equation, an ODE equation derived from momentum and continuity equations
for the evolution of the inner pressure [32], and a PDE for the temperature, both inside
and outside the bubble.

In both models we assumed a perfect gas inside the bubble, low Mach number
regimes, spherical symmetry and thus shape stability. However, while the first two
assumptions are generally realistic, the last two are strictly dependent on the spe-
cific parameter regime that are considered, as large and strongly driven gas bubbles
become shape unstable. This shape instability is meanwhile well understood, even
quantitatively [11, 36—45]. Obviously, strictly speaking our results cannot be applied
to shape unstable bubbles, as such bubbles decay to smaller ones, and for those cases
special care has to be paid when comparing numerical results with experimental data.

2.2  Summary of the models

Both models studied in this work make use of the Rayleigh-Plesset equation to de-
scribe the radial dynamics of the bubble:

L= — JRR+ - (1—— R = — (1+—+—— J[pg—pa]. (21
< CL> +2< 3cL> PL< +cL+cht>[pB Pal 2.1)

Here time derivatives are denoted by a dot, R is the bubble radius, c¢; and py, are the
speed of sound and the density of the liquid, pp is the liquid pressure just outside the
bubble surface and p4 the ambient pressure in the liquid assumed to be given by

PA = P — P,cos 001 | 2.2)

in which p., is the static pressure and P, the acoustic driving pressure. The period of
the driving sound field is given by 7, = 27w /®. An explicit expression for pp results
from normal stress balance at the bubble wall

20

R
— 4y — +=—— 2.3
pP=pB+ IJLR-F R’ (2.3)
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with y;, the dynamic viscosity of the liquid and ¢ the surface tension coefficient. The
gas pressure in the bubble, p, may be regarded as spatially uniform as long as the
Mach number of the bubble wall motion is not too large. In the left-hand side of (6.3)
we have neglected the very small contributions due to the gas viscosity and the vapor
pressure. As will be shown below, the temperature of the liquid at the bubble surface
remains sufficiently low for this to be an excellent approximation.

The two models differ significantly in the way in which the pressure and temper-
ature of the bubble contents are calculated. Here we provide a summary of the two
formulations referring the reader to several papers for additional details and deriva-
tions [20, 44, 46, 47].

2.2.1 PDE model for T(t)
In the detailed model of Refs. [44, 46] the gas pressure is found by solving

3 oT
p=3(0-02%

where 7 is the gas temperature, 7 is the ratio of the gas specific heats, A = A(T) is
the gas thermal conductivity and r the radial coordinate measured from the bubble
center. The temperature distribution inside the bubble is given by

v p[OT (o 0T LN\OT oy
}/—IT[at—i_}/p((y l)lar 3rp> ar] p=V-(AVT). (2.5)

The derivation of this equation (see e.g. [46]) treats the gas as perfect and its pressure
as spatially uniform.

The temperature in the liquid 7; (r,) is described by the standard constant-properties
convection-diffusion equation neglecting compressibility effects and viscous dissipa-
tion:

- YPR) ; (2.4)
R

0Ty  R’R 9T,
PLCpL <atL + rZarL> =M VT . (2.6)

Here ¢, ; and A, are the liquid specific heat and thermal conductivity.
At the bubble surface continuity of temperatures and heat fluxes are assumed:

T(R(t),t) =TL(R(2),t) 2.7
A(Z(R(t),t) = ng;;L(R(I),t) (2.8)

The gas temperature is assumed to be regular at the bubble center » = 0 and the liquid
temperature to remain undisturbed at the initial value 7. far from the bubble.
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2.2.2 ODE model for T(t)

This model [19, 20] makes no attempt to describe the spatial distribution of the gas
temperature inside the bubble. Rather, it is formulated in terms of a volume-averaged
value (T') determined by a global balance over the bubble volume expressing the first
principle of thermodynamics:

cymg(T) = Q — pV (2.9)

where my is the mass of gas inside the bubble, ¢, is the constant-volume specific heat
of the gasand V = %ﬂR3 is the bubble volume. The net heat absorbed by the bubble
per unit time is modelled as

0= anep == 1)

(2.10)
Lin

with /;, an estimate of the thickness of the thermal boundary layer in the liquid. A
correct prescription for this quantity is crucial for the physical realism of the model.
The general properties of diffusion processes suggest

Ln = /DT @2.11)

in which D is the gas thermal diffusivity evaluated for 7 = T, and 7, an appropriate
time scale which is chosen as 7;;, = R/|R|. A cutoff is required when R becomes too
small. A consideration of the Fourier series solution of the diffusion equation in a
bubble of constant radius (which is appropriate when R is small) leads to the estimate
l;n = R/ 7. In conclusion, the final expression for the estimate of the boundary layer

is [19, 20]
. |RD R
lth = min < W, j'[) . (212)

The gas pressure is obtained from a form of the van der Waals equation of state
modified to take into account inertial effects of the gas:

o Nt()th<T> 1

= — = RR 2.1
Vv _N.B 2<p> (2.13)

where (p) is the volume-averaged gas density, N,,, the total number of gas molecules,
kg the Boltzmann constant and B the molecular co-volume.
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2.3 Numerical method

The gas energy equation (5.14) of the detailed model is first reduced to a more man-
ageable form by introducing the auxiliary variable

T 1 TA‘ / /

After this step, the numerical solution of the model is carried out by first transforming
it into a set of ordinary differential equations by a collocation procedure as described
in ref. [12] and, in greater detail, in ref. [21]. We set

N

~ Y a(t)Tu(), (2.15)

k=0

&~

where y = r/R(t) and the T are even Chebyshev polynomials. The variable y fixes
the boundary at y = 1 and the use of even polynomials guarantees a vanishing gra-
dient at the bubble center y = 0. The expansion (2.15) is substituted into the gas
energy equation written in terms of 7' and the result evaluated at the Gauss-Lobatto
collocation points yy

yi = cos(mk/2N), k=0,1,...N. (2.16)

Before subjecting the liquid energy equation to a similar treatment, the semi-
infinite range R(7) < r < oo is mapped onto the finite range 1 > & > 0 by the coordi-
nate transformation

1 R(1)—1
1, r/RO-1
& l

The length / is a measure of the thermal diffusion length in the liquid and is taken as

l:gi\/DL/w

Ry

2.17)

(2.18)

with Dy, the liquid thermal diffusivity D; = 4./ ¢p,.pr. and £ a numerical constant. On
the basis of the results described in ref. [21] a value of ¢ = 20 has been used in this
work. After recasting the liquid energy equation (6.8) in terms of the new variable &,
the liquid temperature is expanded in a truncated Chebyshev series similar to (2.15):

T
TL ~ Y be(t) T (€), (2.19)
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substituted into the equation and the result evaluated at the Gauss-Lobatto collocation

points &;
£ =cos(mj/2M),  j=0,1,..M. (2.20)

Use of the even polynomials in (2.19) enforces the temperature condition at infinity
in the form 97, /dr — 0as & — 0,1i.e. as r — o

The interface conditions (2.7) and (2.8), as written, are algebraic constraints
among the unknown coefficients of the expansions (2.15) and (2.19). For numeri-
cal purposes it proves convenient to differentiate them with respect to time to find

AT & X
=Y b;, (2.21)
EAP I
N 1 A‘L M .
4024, = —= 4n’b, (2.22)
;) ! m(rm)n;

where 7; is the bubble surface temperature.

These steps reduce the detailed model to a system of ordinary differential equa-
tions, the N equations for g arising from the collocation of the gas energy equation,
the M equations for b arising from the collocation of the liquid energy equation, the
two boundary conditions (2.21) and (2.22), the Rayleigh-Plesset radial equation (6.1)
and the pressure equation (5.13). These equations (and notably those including the
time derivatives of the temperature expansion coefficients) constitute a coupled lin-
ear system which is first solved for the derivatives by Gaussian elimination and then
integrated in time by using the 6-th order Gear stiff solver implemented in the IMSL
libraries [48].

In order to ascertain the accuracy of the time integration we monitored the ratios
of the coefficients of the last to the first terms in the expansions, |ay/a;| and |by /b1,
checking that they remained smaller than 1076 and 10~#, respectively, at all times.
We found that 20 and 30 terms, respectively, for the gas and liquid temperature fields
were sufficient to meet these condition.

To simplify the inverse mapping between the modified and original gas temper-
atures T and T the temperature dependence of the gas thermal conductivity was ap-
proximated by a linear relation

A=A+CT. (2.23)

The values A = 0.01165 W/mK and C = 5.528 x 10> W/mK? approximate the mea-
sured thermal conductivity of air over the range 200 K < 7 < 3000 K [12].

The other numerical values used in the simulations described in the next section
were ¢, = 1481 m/s, p, = 1000 kg/m?, p, = 1073 kg/ms, 0 = 0.072 N/m, ¢, =
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4182 J/kg K, A, = 0.59 W/mK and B = 5.1 x 1072 m>. These values are appropriate
for an air-water system at normal temperature and pressure, 7., = 293.15 K and p., =
101.3 kPa.

2.4 Results

The results that follow refer to a sound frequency of 20 kHz, which is typical of much
sonochemical work [49]. According to the theoretical results of ref. [29, 39, 41, 44]
which later got experimentally confirmed [43, 45], at this frequency a 50 and a 100
um-radius bubble become spherically unstable at pressure amplitudes of the order
of 30 and 15 kPa, respectively. At pressure amplitudes slightly above this threshold
the bubble will develop shape oscillations superimposed on the volume mode. These
oscillations lead to a break-up of the bubble at still higher amplitudes which it is dif-
ficult to quantify as they depend on various factors such as the perturbations induced
by other bubbles, liquid motion and others. Even in the regime of weak shape oscil-
lations a spherically symmetric model will capture the major effect responsible for
the heating of the gas, namely the compression of the bubble. For this reason, and in
order to bring out more clearly the differences between the two models, we will use
pressure amplitudes of both 20 kPa and 70 kPa.

The latter case P, = 70kPa is shown in figure 2.1 for Ry = 130um and f = 20kHz.
These conditions are close to resonance as for a Ry = 130m bubble the linear natural
frequency is approximately 24.4 kHz. The bubble executes strong volume pulsations
with a maximum radius of about 3 times Ry, which corresponds to a maximum vol-
ume more than two orders of magnitude larger than the equilibrium volume. In con-
trast, for P, = 20kHz only very gentle oscillations are observed (not shown). In both
cases the differences between the ODE model and the PDE model are very small
as can be seen in figure 2.1 for the P, = 70kPa case (for the P, = 20kPa case the
differences are hardly detectable).

We now consider the effect of variations of the liquid temperature on the gas
temperature and the radial dynamics of the bubble. The temperature 7§ of the liquid
at the bubble surface was estimated in [12] as

L—To Ac,p (2.24)
Teenter — T 2‘LCp,LpL

with Tienrer the gas temperature at the bubble center, ¢, the gas specific heat at con-
stant pressure and p a measure of the gas density. On this basis the expected liquid
temperature increase can be estimated to be small, but it is useful to go beyond esti-
mates and determine quantitatively the actual importance of this effect.
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Figure 2.1: Comparison between the temporal evolution of the normalized radius
during the steady oscillations of an air bubble with an equilibrium radius of 130 um
driven at 70 kPa and 20 kHz as predicted by the detailed (solid line) and simplified
models.
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Figure 2.2: Comparison between the temporal evolutions of the average temperature
according to the simplified model (dash-dot line) and the center (dotted line) and
average (solid line) temperatures of the detailed model during steady oscillations for
the same conditions as in figure 2.1

Figure 2.3b shows the liquid temperature at the bubble surface as a function
of time for the 130 pum-radius bubble driven at 20 kHz with a pressure amplitude



22 CHAPTER 2. THERMAL MODELS

of 70 kPa. The temperature distribution in the liquid in correspondence of the peak
surface temperature is shown in figure 2.3b. A space and time view of the temperature
distribution in the gas and in the liquid in the course of a complete oscillation is
provided in figure 2.4. It is seen that, even with oscillations of such relatively large
amplitude, the maximum liquid temperature at the bubble surface increases by less
than 15 K while the temperature at the core of the bubble becomes close to 1500 K.

The effect of the liquid temperature on the gas temperature is demonstrated in
figure 2.5 which compares the gas temperature distributions taken at the instant at
which the peak values are predicted allowing or not allowing for variations of the lig-
uid temperature. The detailed model provides the entire gas temperature distribution
(solid line), which is seen to be very little affected by the neglect of the liquid tem-
perature rise (dotted line). The simplified model only gives the average temperature
without liquid temperature variations (dash-dot line), which is seen to be very close
to the average temperatures calculated with the detailed model.

We conclude from these and other similar results not shown that temperature vari-
ations of the liquid have a negligible effect on the bubble gas temperature. This result
is in line with the estimate (2.24) and the earlier results of ref. [12]. On this basis, in
order to save computational time, in all the simulations described in the remainder of
this paper we have kept the interface liquid temperature at the undisturbed value 7..
Correspondingly, we have replaced (2.21) by the simpler condition

N
Z ar=0. (2.25)
k=0

An overall impression of how the two models compare can be obtained from
figure 2.6 where the normalized maximum radius during steady oscillations is shown
as a function of the equilibrium radius Ry for driving pressure amplitudes of 20, 50
and 70 kPa; the sound frequency is 20 kHz as before. As already noted, the spherical
shape is expected to be unstable at 70 kPa, but we consider this value of the pressure
amplitude to bring into clearer evidence the differences between the two models.

As could be expected, the main differences are localized around the linear and
nonlinear resonance peaks and are seen to grow with the driving amplitude. In gen-
eral it is observed that, as Ry increases, the transition to a large-amplitude regime
(signalled by the vertical or nearly vertical line; see e.g. ref. [30] for an explanation
of the nature of this transition) occurs slightly earlier in the detailed model than in the
simplified one. As a consequence, the maximum amplitude reached by the detailed
model is slightly higher but the difference remains small for the pressure amplitudes
studied.

For sonochemical applications, a key aspect of the phenomenon of bubble oscil-
lations is the gas temperature. Figure 2.7 shows the maximum value of this quantity
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Figure 2.3: (a) Liquid temperature at the bubble surface during the steady oscillations
of an air bubble in water with an equilibrium radius of 130 um driven at 20 kHz by
a sound field with a pressure amplitude of 70 kPa; 7, is the period of the sound field.
(b) Liquid temperature distribution at the instant ¢ /7; = 0.45 at which the bubble wall
of the previous figure reaches its maximum temperature.
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Figure 2.4: Temporal and spatial evolution of temperature inside (a) and outside (b)
a steadily oscillating 130 pm air bubble in water driven at 20 kHz by a sound field

with a pressure amplitude of 70 kPa.
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Figure 2.5: Gas temperature distribution with a fixed (solid line) and a variable (dot-
ted line) liquid temperature according to the detailed model. The dash-dot line shows
the (average) temperature according to the simplified model and the horizontal solid
and dotted lies are the average values of the detailed model. The temperatures are
shown at the instants at which the peak value is reached in each case.

as a function of Ry for the same conditions as in figure 2.1. The center temperature
for the detailed model is shown by the dotted line while the average temperature of
the simplified model is indicated by the dash-dot line. The solid line is the volume-
averaged temperature predicted by the detailed model and calculated from

(T) = Rf(t) /0 ) dr. (2.26)

In correspondence with the larger maximum radius, the temperatures predicted
by the detailed model are larger than that predicted by the simplified one, with a
difference of a few hundred degrees attained in correspondence of slightly different
radii near the main resonance at the largest driving amplitude. Just as in the case of
the radius shown in figure 2.1, however, at the same value of the equilibrium radius
the differences are not very large.

A more detailed view of the differences between the gas temperatures predicted
by two models is shown in figure 2.2 for a 130 um-radius bubble driven at 70 kPa and
20 kHz. The average temperatures of the detailed (solid line) and simplified (dash-dot
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Figure 2.6: Normalized maximum radius during the steady oscillations of an air bub-
ble in water driven at 20 kHz as a function of the equilibrium radius Ry. The detailed
and simplified model results are shown by the solid and dashed lines respectively. In
ascending order, the driving pressure amplitudes are 20 and 70 kPa.
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Figure 2.7: Gas temperature at the center of the bubble (dotted line), and mean tem-
peratures according to the detailed (solid line) and simplified (dash-dot line) models
during the steady oscillations of an air bubble in water driven at 20 kHz as a func-
tion of the equilibrium bubble radius Ry. In ascending order, the driving pressure
amplitudes are 20 and 70 kPa.
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line) models are nearly identical, while the center temperature of the detailed model
peaks at a slightly higher value for a very short amount of time.

Figure 2.9 shows the normalized maximum and minimum temperature distribu-
tions inside bubbles with equilibrium radii of 30, 130 and 305 um driven at 70 kPa
and 20 kHz. The solid and dotted lines are the local and average temperatures of the
detailed model while the dash-dot lines are the average temperatures of the simplified
model. The upper three lines refer to the instants at which the maximum average tem-
peratures are reached in each model, and the lower three lines to the instants at which
the minimum average temperatures are attained. The gas temperature distribution
inside the largest bubble is approximately uniform except for a boundary layer near
the wall. The temperature in the smallest bubble, on the other hand, exhibits a signif-
icant variation throughout the bubble volume. In this case the mean temperatures are
very close, but the detailed distribution shows that this result comes about because
the temperature in the inner region of the detailed model is offset by the relatively
cool gas near the bubble wall. A good fraction of the gas is at a temperature about
20-30% higher than the mean value. Given the at least approximate Arrhenius-law
dependence of reaction rates, this difference in principle could have some observable
effects in the sonochemical yield.

Related to the temperature distribution is the heat exchanged with the liquid
which is given by eq. (4.4) in the simplified model and by

Q = 4nR* [)L gT]

" 1r=R(r)
in the detailed model. The peak values of this quantity which, as defined, is positive
when the transfer is directed from the liquid to the bubble, are shown in figure 2.10.
The upper and lower diagrams show the heat lost and gained by the bubble respec-
tively. A major qualitative difference between the two diagrams is the respective
orders of magnitude. The heat lost by the bubble is more than one order of magni-
tude larger than that gained. This feature is at the root of the dominance of thermal
energy losses over other dissipative mechanisms affecting the oscillations of bubbles
below and around the resonance frequency (provided the radius is not too small as
to make viscous losses significant). The heat losses predicted by the detailed model
(solid line, upper diagram) are close to those of the simplified model except in a
narrow radius range near the fundamental resonance for the highest driving pressure,
where they are seen to be around 40% smaller. This is a large difference, but it occurs
only during the brief instants in which the bubble is close to its minimum radius, as
shown in figure 2.8. The differences among the incoming heat flow rates are much
larger, particularly from the second harmonic region on up, but the absolute values
are small.

(2.27)
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The distribution in time of the heat flow rate for the steady oscillations of a 130
um-radius bubble driven at 70 kPa and 20 kHz is shown in figure 2.8. The solid line
is the detailed model prediction and the dashed line that of the approximate model.
The spike exhibited by the latter model near the point of maximum radius is an effect
of the cutoff (2.12) applied when the boundary layer thickness becomes too large
near the points of low radial velocity. This effect is highly localized in time and it
is unlikely to have major consequences. In spite of the differences between the peak
values shown in figure 2.10, one notices a substantial consistency between the two
results over the complete course of an oscillation.
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Figure 2.8: Heat flow rate into the bubble as a function of time during the steady
oscillations of a 130 um-radius air bubble in water with driven at 70 kPa and 20 kHz
as predicted by the detailed (solid line) and simplified models.
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2.5 Summary and conclusions

In this paper we have compared two models of the forced oscillations of gas bubbles
in liquids, devoting particular attention to the gas temperature in view of its impor-
tance for sonochemistry. The two models differ in their ability to capture details of
the process. One accounts for the temperature distribution in the bubble and in the
surrounding liquid, while the other one treats the bubble as a spatially homogeneous
system. We have found that when the oscillation amplitude is moderate, namely at
pressure amplitudes up to 70 kPa or, for larger pressures, away from linear and non-
linear resonances, the two models are in very good agreement. Thus, in this parameter
range, the simpler model can be used with confidence with the advantage of simpler
programming and shorter execution times. For strong driving or near resonances we
have found some differences, but it is then doubtful that bubbles would retain their
integrity in view of their susceptibility to shape instabilities and break-up.

We have focused on the single driving frequency of 20 kHz which is common in
applications. At higher frequencies the picture would remain very similar provided
radii are approximately shifted in inverse proportion to the frequency. Smaller bub-
bles, however, also tend to be more isothermal, with a consequent increase in energy
loss. This feature is expected to reduce the difference between the two models at
higher frequencies. The expectation is the opposite at lower frequencies, but larger
bubbles are even more shape-unstable and, therefore, it is likely that neither model
would be relevant except at rather low pressure amplitudes.
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Figure 2.9: Normalized temperature distribution inside air bubbles in water with equi-
librium radii of 30, 130 and 305 pum driven at 20 kHz by a sound pressure amplitude
of 70 kPa. In each figure the upper and lower groups of three lines refer to the in-
stants at which the peak and minimum average temperatures are attained. The solid
lines are the results of the detailed model, the horizontal dash-dot line the average
temperature from the simplified model and the dotted horizontal lines the average
temperature of the detailed model calculated from (2.26).
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Figure 2.10: Peak values of the heat lost (upper figure) and gained by a steadily
oscillating air bubble in water driven at 20 kHz as a function of the equilibrium bubble
radius Ry according to the detailed (solid line) and simplified (dash-dot line) models.
The sound pressure amplitudes are 20 and 70 kPa.
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Efficient sonochemical reactors * 7

We describe the ejection of bubbles from air-filled pits micromachined on a silicon
surface when exposed to ultrasound at a frequency of approximately 200 kHz. As
the pressure amplitude is increased the bubbles ejected from the micropits tend to be
larger and they interact in complex ways. With more than one pit, there is a thresh-
old pressure beyond which the bubbles follow a trajectory parallel to the substrate
surface and converge at the center point of the pit array. We have determined the
size distribution of bubbles ejected from one, two and three pits, for three different
pressure amplitudes and correlated them with sonochemical OH radical production.
Experimental evidence of shock wave emission from the bubble clusters, deformed
bubble shapes and jetting events that might lead to surface erosion are presented. We
describe numerical simulations of sonochemical conversion using the empirical bub-
ble size distributions, and compare the calculated values with experimental results.

“Published as: [David Fernandez Rivas*, Laura Stricker*, Aaldert G. Zijlstra, Han J.G.E. Garde-
niers, Detlef Lohse and Andrea Prosperetti, Ultrasound artificially nucleated bubbles and their sono-
chemical radical production, Ultrason. Sonochem., 20(1), 510-524, 2013];*these authors contributed
equally to the present work.

TThe experimental data present in this chapter are entirely due to David Ferndndez Rivas.
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3.1 Introduction

Sonochemistry, the use of ultrasound in chemistry and processing [1], is a very
promising field with applications in e.g. nanomaterials synthesis, degradation of con-
taminants in water treatment and the food industry [2—4]. In a sonochemical reactor
each bubble acts as a single reactor in itself [5, 6], but the spatial distribution of
these bubbles is normally not homogeneous, forming filamentary patterns or clus-
ters [7, 8]. Establishing the correlation between the sonochemical yield and the size,
location, and dynamics of the bubbles in these clusters, may provide the knowledge
to improve the efficiency of sonochemical reactors.

There is a considerable amount of experimental and theoretical work on single
bubbles [5, 9, 10] but, for practical applications, where the interest normally resides
in multibubble systems, it turns out to be very difficult to extract bubble sizes and
spatial distributions [11, 12]. So far only holographic or laser techniques were suc-
cessful in providing such information while also valuable information was obtained
from bubble dissolution measurement [7, 13—19]. No study combining bubble distri-
bution, sonochemical conversion and corresponding numerical simulations has been
published.

At the root of this problem lies the fact that cavitation and its inception are ex-
tremely complex and very difficult to control. Once the conditions for cavitation
inception exist, many phenomena have an influence on the functioning of the sono-
chemical reactor: bubble-bubble interaction, coalescence, surfactants or impurities
dissolved in the liquid altering the bubble population and liquid properties, recircula-
tion of the liquid inside the reactor, energy losses due to viscous heating, degassing
of the liquid, energy conversion losses (e.g., electrical-to-mechanical) among oth-
ers [20-28]. In this work we present a continuation of our first efforts to increase
the efficiency of sonochemical reactors [29, 30]. The concept is based on small pre-
defined crevices in which stabilized gas pockets remain entrapped when introduced
into the liquid [31-34]. When exposed to ultrasound, these gas pockets continuously
generate chemically active cavitation bubbles at their location. These bubbles form
peculiar and stable clouds in the reactor that do not occur in the absence of the pits.

A major advantage of this method is that the location of the bubbles is stable,
known a priori, and coincides with the region of high intensity ultrasound. This
feature is in contrast with the usual sonoreactors where bubbles occur randomly over
large volumes. The reproducible cavitation structures generated in our system enable
us to study the relation between the bubble size distribution, number of bubbles,
spatial distributions, and chemical production rates. The latter are determined using
dosimetry of OH' radicals while the former are obtained using a nanosecond flash-
photography technique. In this paper, the acquired rates in terms of radical production
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per bubble per acoustic cycle are discussed. Additionally, calculations provide further
insight into some of the observed phenomena.

3.2 Materials and Methods

3.2.1 Silicon micromachining

The bubbles were generated from the gas entrapped in pits with a diameter of 30 um
and a depth of 10 um etched in square silicon chips with a side of 10 mm. These
substrates were micromachined under clean room conditions on double-side polished
silicon wafers with (100) crystallographic orientation. The pits were etched by means
of a plasma dry-etching machine (Adixen AMS 100 SE, Alcatel). Pits arranged in
three different configurations were used: single pits, two pits separated by a distance
of 1 mm, and three pits arranged at the corners of an equilateral triangle with sides of
I mm (see Fig. 3.1).

3.2.2 Set-up for US experiments and imaging technique

A sketch of the experimental arrangement is shown in Fig. 3.2.

The cavitation cell was a glass container of 25 mm outer diameter, 15 mm inner
diameter and 6 mm depth. The thickness of the cell bottom was 6 mm and matched
one quarter of the wavelength at the operation frequency of 200+5 kHz generated by
a piezo Ferroperm PZ27 6 mm thick and 25 mm in diameter glued to the cell bottom.
To prevent loss of water by evaporation and gas by acoustic degassing the cell was
covered by a glass slide resting on a rubber ring.

Two types of experiments were conducted, the measurement of sonochemical
reaction rates and the imaging of the bubbles and their size distribution. For the first

L

Pits

Figure 3.1: Pits micromachined on a silicon substrate by deep reactive ion etching.
Top view (left) and a zoom-in perspective view (right). The diameter of the pit on the
right is 30 um.
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Figure 3.2: Experimental setup used for short exposure imaging and inset showing a
detailed sketch of the cavitation cell.

type, the acoustic excitation was a sinusoidal signal provided by a Hewlett Packard
33120A arbitrary waveform generator amplified by means of a SONY TA-FB740R
QS amplifier. The voltage and current provided to the piezo were measured with a
Tektronix DPO 4034 oscilloscope and Tektronix current probe CTA2. The bottom
surface of the piezo was kept in contact with a Peltier element (Marlow Industrial) to
maintain the temperature at a constant value of 25 °C. At low and medium power the
temperature increase during each experiment was measured to be no more than 1 K,
while in the high-power case the temperature increased no more than 3.8 K, mainly
during the first minute, and then remained constant. To study the radical production
three different power settings were used with all three pit arrangements: low (0.074
W), medium (0.182 W) and high (0.629 W).

The arrangement was similar for the bubble imaging experiments except for the
use of a Krohn-Hite model 7602 wide-band amplifier and a Tabor Electronics Ltd.
model WW1072 function generator. The different amplifiers resulted in differences
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Figure 3.3: Bubble clouds originating from a two-pits substrate. Each row corre-
sponds to a different acoustic amplitude increasing from top to bottom. The left
column illustrates the time averaged extent of the cavitation cloud imaged at nor-
mal speed. The right column are single snapshots of 7 ns exposure time, in which
individual bubbles can be distinguished at approximately maximum expansion.

in the electrical power supplied to the piezo element, which were 0.194 W (low),
0.654 W(medium) and 0.981 W (high). In this case space constraints prevented the
use of the Peltier element.

Imaging was carried out with two cameras, one Photron model SA1.1 record-
ing movies at normal speed (25 fps), the other one used for single snapshots was
a Lumenera LM165 with a sensitive Sony EXview HAD CCD sensor. The Olym-
pus microscope was equipped with two long working distance (WD) objectives, the
LMPLFLN 10x, (WD 21 mm/NA=0.25) and the SMPLF LN 20x (WD 25 mm/NA=
0.25) both Olympus. Illumination was provided by a bright laser induced fluores-
cence pulse of 7 ns duration (full width at half maximum) which, amounting to about
one thousandth of the acoustic period, enabled us to obtain high-resolution images
without motion blur. The minimum radius detectable in the experiment was ~0.5
um. Additional details on this method can be found elsewhere [35]. Examples of the
images obtained in this way are shown in Figures 3.3 and 3.4.

The purpose of these images was to obtain information on the number and sizes
of the bubbles at various phases of the sound excitation. The difficulty to overcome
was that the bubble density was high so that in many cases the images of different
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bubbles overlapped. To identify the individual bubbles it was therefore necessary to
develop a special Matlab-based software using the so-called watershed segmentation
algorithm [36]. After identification, the bubbles were counted and the image of each
bubble was processed to extract the projected area and, with the assumption of a
spherical shape, the equivalent diameter.

3.2.3 Pressure amplitudes

The quantity of interest for bubble oscillations is the acoustic pressure amplitude
rather than the electrical power provided to the transducer. Unfortunately the conver-
sion from one to the other is a notoriously difficult step. We attempted to measure
the acoustic pressure amplitude by using a hydrophone (Onda HNR-500) with the tip
positioned 65 um above the center point of the chip. The estimated error affecting
these values according to the manufacturer is 20%. The values found in this way were
165 kPa for 0.074 W, 225 kPa for 0.182 W, and 350 kPa for 0.629 W. These values
are uncertain due to several possible factors, electrical interference, the presence of
waves on the surface of the liquid, bubble formation at the hydrophone tip and others.
Furthermore, bubbles detune the cell and shield each other, therefore these values are
provided only for reference purposes. A better estimate will be derived in Section 8.2
with the aid of numerical simulations.

3.2.4 Radical dosimetry

Conversion of terephthalic acid to 2-hydroxyterephthalic acid (HTA) was taken as
a measure for the concentration of OH' radicals. A calibration graph of fluores-
cence intensity as a function of HTA concentration was obtained following steps
similar to those described in the literature [37]. Fluorescence was measured using
a spectrofluorometer (TECAN Sapphire*”™) with an excitation wavelength of 310
nm. The fluorophore had a peak emission wavelength of 429 nm, but the emission
was scanned between 350 and 600 nm. Following the method reported by lida [38],
the acid solution was prepared by mixing 2.0 x 1073 mol/¢ (0.332 g) of terephthalic
acid (Sigma-Aldrich) 5.0 x 103 mol/¢ (0.200 g) of NaOH and phosphate buffer
(pH 7.4), prepared from 4.4 x 103 mol/¢ (0.589 g) of KH,PO4 and NayHPO4(7.0
x 1073 mol/¢ (0.981 g)) (all from Riedel - de Haén). The resulting solution was then
made up to 1 ¢ with milliQ water.

An amount of 300 p? of the solution measured with an Eppendorf micropipette
was used in each experiment. At the end of the experimental run, the solution was
pipetted out of the cell and stored in dark in sterilized vials (manufactured by Brand)
for spectroscopic analysis. This step was conducted with 200 p¢ taken from the
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stored solution pipetted into the wells of a Corning Inc. well assay plate. The spec-
trophotometer settings for the analysis of the samples were: gain 40, height from the
well, 9000 pm, integration time 100 us, 10 reads per well.

Each experiment was repeated six to ten times and the mean concentration value
was calculated. The largest standard deviation occurring for the case of three pits at
maximum power, was about 30 % of the average value.

Calculation of the radical formation rate was carried out according to:

ANygaq o (Cend *Cinitial)NAV

3.1
At At ’ G-

in which c¢,,4 and ¢;,;r;is = O are the final and initial concentrations of HTA in moles
per volume, Ny = 6.02 x 10%> mol~! is Avogadro’s number and V is the liquid volume
exposed to the US (300 p?).

3.2.5 Theoretical bubble dynamics and radical production calculation

The model used to theoretically describe the bubble dynamics is based on an ex-
tended Rayleigh-Plesset-type equation, adopting the boundary layer approximation
to estimate diffusive and thermal fluxes and assuming spherical symmetry for the
bubble [39—42]. Temperature evolution over time is given by a global energy bal-
ance. The gas inside the bubble is taken as air with a van der Waals type equation of
state. Changes in the transport parameters in accordance with compositional changes
of the mixture are also included in the model. A driving frequency of 200 kHz was
taken, in agreement with experiments. Interaction between bubbles due to Bjerknes
forces as well as coalescence effects were neglected.

3.3 Results and Discussion

3.3.1 Description of the observed phenomena

When the US is switched on, a continuous generation of bubbles is observed issuing
from the gas stabilized in the pits on the silicon surface. These bubbles are likely
caused by an instability of the liquid free surface at the pit mouth which undergoes
large-amplitude oscillations under the action of the US. A similar process taking
place at the surface of a free bubble has been described in the literature [7, 43, 44].
The resonance frequency of the pits is of the order of 150 kHz and the radius
of bubbles resonating at the applied frequency of 200 kHz is about 15 um [45, 46].
Thus one would expect that, under the action of Bjerknes forces, bubbles smaller than
this size would be repelled by the pits while larger ones would be attracted. At low
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Figure 3.4: Images of a substrate with three pits at different powers and at two se-
lected points in the acoustic cycle. The upper row corresponds to high power (0.981
W) and the lower row to low power (0.194 W). Visible with normal illumination
conditions (a and d) and corresponding short exposure images: b and e in the com-
pression; ¢ and f in the expansion phase of the acoustic cycle.

power, the observed behavior is compatible with this expectation as shown in Figures
3.3 and 3.4. A few bubbles are observed at any given time. They move some distance
away from the pit and survive a few cycles before disappearing [45].

As the power is increased, the ejected bubbles become more numerous forming
clouds of increasingly larger size around the pits. At still higher powers, with more
than one pit, the clouds appear to be attracted to each other until, at a fairly repro-
ducible power level, they travel towards the central area of the pit array where they
collect forming a single cloud (see Figures 3.3 and 3.4). As shown in Ref. [29], and
as can be seen in the last frame of Fig. 3.8 below, these clouds when observed from
the side resemble the conical clouds formed at the tip of sonotrodes [47, 48]. These
structures are very different from the filamentary structures, sometimes called acous-
tic Lichtenberg figures [49], which are common in normal acoustic cavitation at high
acoustic amplitudes.

The cloud is continually fed by new bubbles arriving from the pits under the
action of the complex interplay of primary and secondary Bjerknes forces and micro-
streaming acting on the bubbles. The bubbles in the cloud are observed to break
up seeding the liquid with their fragments which then grow into additional bubbles
that join the cloud. The processes responsible for the accretion and loss of bubbles
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Figure 3.5: When a pit is filled with water in a three-pit substrate, the bubbles nu-
cleated by the remaining active pits attain the same configuration as for a two-pit
substrate: a, Medium power (0.654 W) and b, High power (0.981).

eventually reach a steady state and the cloud is not observed to grow further.

The transition from clouds localized near the pits to a central cloud exhibits hys-
teresis, with the pressure amplitude necessary to return to separated clouds lower than
that needed to bring them together.

The three-pits arrangement of Fig. 3.4 shows transition to a pattern similar to that
of Fig. 3.3 for two pits when one of the three pits is rendered inactive (see Fig. 3.5).
This observation suggests that liquid flow does not play a major role in the observed
cloud attraction, which therefore must be mostly due to Bjerknes forces.

At high power a region of damaged silicon substrate forms near the pits within
5 minutes of exposure to the US (see Fig. 3.6). The shape of the individual damage
sites coincides with the crystal planes of the crystalline structure of the silicon wafers.
Damage to other parts of the chip and, in particular, under the large cloud forming
over the center of the pit array, is much more modest and takes a significantly longer
time. For more details see Ref. [30]

We have found that this localized acoustic bubble generation can be sustained
for at least several hours if temperature is kept constant and gas loss is prevented
by means of the glass slide mentioned before. Therefore we must conclude that the
loss of gas associated to the bubble generation does not deactivate the pits, which is
evidence of a process of rectified gas diffusion into the pits similar to the well-known
process taking place with free bubbles.

The emission of shocks by collapsing bubbles is a known feature [50, 51]. An
example in our case is shown in Fig. 3.7.

When bubbles are close to each other or to the solid surface, which preferentially
occurs at higher power, they tend to deform and to interact. When bubbles are close
enough, they develop liquid jets towards each other (see as an example [52]). Fig.
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Figure 3.6: SEM image affording a comparison of a substrate before (1) and after
(2) use in ultrasonic experiments. The damage pattern and zoom-in views of it, show
that the eroded surface coincides with the {111} silicon crystal planes.

3.8 shows several examples of such deformations and interactions.

In interpreting these images it must be kept in mind that bubbles smaller than
resonance size expand during the acoustic compression phase, while bubbles bigger
than resonance size contract. At high powers these latter bubbles may become un-
stable and split, generating the significantly smaller bubbles seen in the figure. The
actual stability of these bubbles will also be influenced by their distance from the
solid substrate and the proximity of other bubbles. Some of the smaller bubbles may
also become unstable and fragment during collapse, but this would happen during the
acoustic expansion phase.

We have estimated the translational velocity of typical bubbles on the basis of
some preliminary experiments by imaging the acoustic field at 1.4 Mfps. We found
typical velocities of about 10 m/s and corresponding lifetimes of 100 us, which is
of the same order as that reported for other typical sonoreactors at similar frequen-
cies [18] where bubbles had a lifetime of the order of 350 us.

3.3.2 Bubble size distribution

As explained before, in order to characterize the bubble size distribution and its evo-
lution in time over an acoustic period, we took snapshots of the cavitating region with
an exposure of 7 ns. The repetition time of the laser did not allow us to take consec-
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Figure 3.7: Shock waves emitted in the two-pit, high power situation (0.981 W).
Several shock waves are observed in top and side views.

utive images faster than about 1 per second, i.e., every 200,000 acoustic cycles. The
laser timing was set so as to generate a flash at a fixed phase of the sound field. We
selected 10 phases and took 10 images per phase to improve the statistics.

As shown in Table 3.1, at the low power settings the number of bubbles in each
frame was relatively small, typically 3-5 per pit and sometimes even less. Further-
more, the occasional overlaps of the bubble and pit images made it difficult to accu-
rately count these bubbles. The measured low-power bubble populations, therefore,
are not very accurate but are presented for reference as a lower bound; an example is
provided in Fig. 3.9.

At the medium power settings the statistics improves since the bubbles tend to be
more numerous, to grow larger and to move away from the pits. An example of a
probability density function (PDF) for medium power is shown in Fig. 3.10.
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Figure 3.8: Deformed bubbles at high power settings (0.981 W). Note how bubbles
tend to deform in all cases. When two bubbles are close, they develop liquid jets
towards each other as in the upper right picture.

At high power (0.981 W) and one-pit configuration the expansion and collapse
of the ejected bubble are very dramatic and their shape is highly deformed. The
equivalent radii, therefore, are less representative of the actual size of a corresponding
spherical bubble. The number of bubbles can also be under-estimated since some
large bubbles overlap and the post-processing code can consider two or a blob of
several bubbles as a single one. Nevertheless it provides a qualitative measure of
their number. A typical PDF for high power is depicted in Fig. 3.11.

The bubble size distribution for a certain acoustic phase is the distribution of
equivalent radii of the total number of bubbles over the 10 frames taken at that phase.
The average radius is obtained by averaging the radii of all the bubbles in the 10
frames and the most probable radius is that with most occurrences at that phase. For
example, a bubble size distribution such as that in Fig. 3.11 for t/T=0 is right-skewed
i.e. more frequent smaller equivalent radii (R). The most probable radius is ~ 2 pm,
but the average radius is larger, as the distribution includes a range of radii up to 35
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Figure 3.9: Bubble size distribution histograms at a power of 0.194 W for one pit. The
axis to the extreme right represents the normalized pressure for the acoustic cycle.
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Figure 3.10: Bubble size distribution histograms for a power of 0.654 W for two
pits. The axis to the extreme right represents the normalized pressure for the acoustic
cycle.
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Figure 3.11: Bubble size distribution histograms at a power of 0.981 W for three
pits. The axis to the extreme right represents the normalized pressure for the acoustic
cycle.

um. See Fig. 3.12 for more details.

Table 3.1 presents a compilation of the experimental data on several measures of
bubble size and average number per cycle. As noted above, the radius of resonant
bubbles at the experimental frequency is about 15 um. The measured average bubble
radius is of this order (8 to 16 wm) and the most probable radius is between 2 and 5
um. Figure 3.12 shows an example of the evolution of the most probable and average
radii, together with the number of bubbles during one acoustic cycle at 0.981 W for
three pits. It is seen in the bottom panel of this figure that the number of bubbles
peaks shortly after the maximum pressure. This feature may reflect the expansion of
the smaller bubbles which are below the optical resolution of our apparatus during
the rest of the acoustic cycle.

The average number of bubbles instantaneously present is shown in Fig. 3.13.
These data were obtained by summing the number of all bubbles visible in all frames
(10 frames each for 10 phases) and dividing by a hundred. For the one-pit configura-
tion, as the power is increased the number of bubbles increases as would be expected.
The results shown for low and medium power correspond to isolated bubble clouds
while for two and three pits at high power the clouds have merged as explained be-
fore. When this happens, the observed bubble number does not increase, possibly
due to bubble-bubble interactions and the finite amount of gas available [53-55].
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Figure 3.12: Top: Normalized pressure for the acoustic cycle. Center: Most probable
radius (circles) and average radius (squares); Bottom: Average number of bubbles at
different phases at a power of 0.981 W for three pits.

3.3.3 [Experimental radical production rates

It was shown earlier [29] that the duration of the experiment does not seem to affect
the reaction rates up to 30 minutes of operation. The radical production rate defined
in Equation 3.1 is shown as a function of the ultrasonic power in Fig. 3.14. It is
important to note that there is no significant effect of the US power when no pits are
present. It is clear that the presence of the pits is essential for for the generation of
sonochemically active bubbles: the pits enhance cavitation by facilitating the appear-
ance of a larger number of bubbles, at a location in the reaction cell that otherwise
would have no detectable bubbles or none at all.

For the lowest power the total radical production rates are around 5 nM s~!, but


creo
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Table 3.1: Bubble population characteristics in a cycle.
Low power (0.194 W)

1 pit 2pits 3 pit

Most probable radius [um] 17 3 2

Average bubble radius [um)] 16 10 12

Npupble 3 5 17

Medium power (0.654 W)

I pit 2pits 3pit

Most probable radius [m] 2 3 3

Average bubble radius [um] 9 12 8
Npubble 4 29 113

High power (0.981 W)
1 pit 2pits 3 pit

Most probable radius [um] 2 3 5
Average bubble radius [pm] 8 9 10
Npubble 50 102 96
160¢ —e—-High Power
=E==Medium Power
140 Low Power

Number of bubbles

2
Number of pits

Figure 3.13: Average number of bubbles in the cavitation field for the different power
settings: Low (0.194 W), Medium (0.654 W) and High (0.981 W).

as the power is increased, the reaction rate increases as well. The maximum value
corresponds to the three-pits configuration at high power.

When the amount of radicals formed per second is divided by the number of pits
we see an interesting trend depicted in Fig. 3.15. For one pit the rate of radical forma-
tion is higher than for two- and three-pits in all cases. Possible factors contributing to
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Figure 3.14: Radical production rates for the different power settings.

this result are the mutual shielding of the bubbles, a detuning of the cell and change
in the sound power distribution due to the larger gas volume fraction, the availability
of dissolved gas in the liquid and possibly others.

If we calculate the radical production per cycle and divide it by the average num-
ber of bubbles per cycle, we can get an estimate to be compared with single bubble
radical production measured by Didenko and Suslick [6] who reported data for a
single bubble of maximum radius of 28.9 um driven at 52 kHz. They measured an
OH' radical generation rate of 6.6 x 10° per cycle. Our data, which are shown in Ta-
ble 3.2, are of the same order of magnitude despite the differences in the experimental
parameters. We expected lower rates due to the smaller volume of our bubbles (itself
a consequence of the higher frequency), to mutual shielding and bubble deformation.
A possible explanation for our results is radical production by bubbles smaller than
0.5 wm, which our experimental technique cannot resolve.

3.3.4 Discussion of the calculated efficiencies

In principle, a measure suitable for the quantification of the sonochemical conversion
could be defined as:
AH (AN, 44/ At)

) (3.2)
Pys

Xys =
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Figure 3.15: Radical production rates for the different power settings (Low 0.074 W,
Medium 0.182 W and High 0.629 W) divided by the number of pits.

Table 3.2: Radical production per detected bubble per cycle
Low power
(0.074-0.194 W) 1 pit 2 pits 3 pit
7.06x 10° 503 x 10°  2.15 x 10°

Medium power
(0.182-0.654 W) 1 pit 2 pits 3 pit
1.48% 10° 299 x 10° 1.00 x 10°

High power
(0.629-0.981 W) 1 pit 2 pits 3 pit
1.76x 100 121 x10° 1.78 x 10°

where Pyg is the power absorbed by the transducer and AH is the energy required for
the formation of OH' radicals (5.1 eV=8.2x10~'°J), which is equal to the enthalpy
of formation associated with the following chemical reaction:

HZOAH::;AIeV OH + H- (3.3)

The problem with this definition is that only a small fraction of the power provided
to the piezo is responsible for the sonochemical effect [56]. As a mater of fact, by
comparing the power absorbed with and without pits and, therefore, in the presence or
absence of intense bubble activity, we have found very small differences. This leads
us to conclude that the majority of the power absorbed by the system is lost in the
electrical-to-mechanical conversion. Nevertheless we will use the definition (3.2) as
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Figure 3.16: Nominal experimental efficiency values (Xys) for different number of
pits and different US powers calculated from Eq. (3.2). The presence of pits for each
power makes a clear difference with an increase in efficiency as the number of pits
is increased. In the case of no pits, an increase in power produces a slow increase in
efficiency. From low to medium power the trends increase for any number of pits. For
the high power case, there appears to be a decrease in efficiency for any number of
pits. It is not clear whether this result corresponds to true differences in the acoustic
and sonochemical processes or to a decreased efficiency of conversion from electrical
to mechanical power.

a convenient dimensionless measure of the sonochemical conversion efficiency. The
electric power absorbed by the transducer Pys was determined from the measured
voltage and current, and their phase difference.

The efficiency values calculated with Eq. (3.2) are shown in Fig. 3.16. As
presented before [29], the most efficient setting appears to correspond to medium
power. However, for the reasons mentioned before, the efficiencies shown in the
figure may not reflect purely acoustic features of the system. Nevertheless we present
this data following the prevailing custom in the sonochemical literature [27, 56].

3.3.5 Obtaining numerical effective bubble size distributions and effec-
tive driving pressures

As explained in Section 3.2.5, one can estimate the production of radicals in a single
bubble on the basis of existing models. In order to apply these models to the complex
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bubble fields studied in the present experiments, it is necessary to know the distri-
bution of bubble radii and the effective pressure amplitude to which each bubble is
subjected.

For this purpose we relied on measured probability distributions of bubble sizes
at each phase of the sound field. These PDF were obtained by collecting 10 snapshots
of the bubble field for each phase of the pressure. Each snapshot can be considered
as statistically equivalent and independent from the others as the separation between
successive ones was 2 x 10° cycles which is much longer than the expected lifetime
of the individual bubbles. The idea of the simulation was to determine a pressure
amplitude and bubble equilibrium radius distribution that matched the measured radii
distribution at each phase.

We started from the measured distribution at a particular phase chosen so as to
have a large number of bubbles, which generally coincided with a small average ra-
dius and small standard deviation. For each one of these bubble radii we integrated
the extended Rayleigh-Plesset equation assuming a vanishing initial radial velocity
and using different pressure amplitudes [39]. We found that the nominal pressure am-
plitudes applied in the experiment produced bubble size distributions quite different
from the measured ones, as shown in Fig. 3.17.

In order to match the measured distributions (see Figs. 3.9, 3.10 and 3.11) it was
necessary to adjust the pressure amplitudes used in the simulations, which resulted in
much lower values than the nominal experimental ones. The adjustment was done by
minimizing the cumulative squared difference between experimental and calculated
PDF for each phase (see Fig. 3.18).

The pressure levels deduced in this way were in the range between 110 kPa and
170 kPa. Since the minimum radius detectable in the experiment was about 0.5 ym, a
larger number of small bubbles appeared in simulations than in the experiment. The
fit between experimental and calculated PDF was best for high applied power and
more pits, i.e. for high numbers of nucleated bubbles (see Fig. 3.19 and 3.20).

At low applied power the number of bubbles detected in the experiments was too
small to provide good statistics, especially in the one-pit configuration. Moreover,
at low power, the standard deviations of both the experimental and the calculated
PDF normalized by the average radii were higher during the whole oscillation cycle,
even if the average radii themselves were larger. This means that the data were more
scattered than in the high power case, both in absolute and relative terms.

In the one-pit case, if we increased the applied power, the effective pressure
derived from simulations monotonically increased (see Fig. 3.21) together with the
number of bubbles measured in the experiments, while their average radii and nor-
malized standard deviations decreased. In the two- and three-pits cases, a similar
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Figure 3.17: Bubble size distribution from experiment (black) and simulation (grey),
for high power (0.981 W) and the three-pit configuration. It appears that the pressure
amplitude measured with the hydrophone overestimated the effective value felt by
the bubble population. Simulations carried out using these values were not able to
describe the evolution in time of the radii distribution, as the average radius was
overestimated during the whole cycle, the expansion phase was much longer than in
experiments and the distributions were almost symmetric, instead of right-skewed.

behavior was observed, with the effective pressure rising with the applied power and
the average radius decreasing.

This trend, however, changed in correspondence of the pressure levels at which
the observed bubble distribution switched from separate clouds surrounding each pit
to the complex bubble field structure observed in Fig. 3.3 and Fig. 3.4. Beyond
this threshold, the measured bubble size distribution changed significantly and the
pressure necessary to fit the data abruptly decreased. This supports our view that the
mutual shielding of the bubbles leads to a reduction in the effective pressure seen by
the bubbles.

3.3.6 Calculation of the radical production

On the basis of the bubble sizes and pressure amplitudes determined in the way de-
scribed in Subsection 8.2, we calculated then the number of OH- radicals produced
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Figure 3.18: Cumulative squared error (over all bubble sizes and acoustic phases)
between the PDF of the radii from experiments and from the simulations, as a func-
tion of the pressure values used in the simulations, for three-pit configuration, at high
power (0.981 W). The effective driving pressure felt by the bubble population was
115 kPa and was extracted by minimizing the cumulative squared error.

by singles bubble with the equilibrium radius corresponding to the experimental dis-
tribution.

The bubble population at the instant at which the average radius over the 10
frames was minimum was taken as the initial and equilibrium distribution for the
simulations. This generally coincided with the instant when the highest number of
bubbles was found.

For this calculation, one hundred equi-spaced bubble equilibrium radii were cho-
sen for each 10 um size bin. For the pressure conditions given by the fitting pro-
cedure, the number of radicals diffusing inside the liquid over the first cycle was
calculated for each value of the radius. The results were then averaged over all the
radii belonging to the same bin.

As a general behavior, the calculated chemical output was higher at higher ef-
fective pressure but, in the two- and three-pits configurations, the radical production
exhibited a significant dependence on the bubble size distribution, which was differ-
ent before and after the transition from individual bubble clouds to complex patterns.
Thus, a higher radical production was observed in the latter cases even for the same
calculated effective pressure (see Fig. 3.22).

The transition to the complex bubbles patterns affects the acoustic field and the
liquid flow in the cell, with possible consequences for the sonochemical activity as
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Figure 3.19: Bubble size distribution from experiment (black) and simulation (grey),
for high power (0.981 W) and the three-pit configuration. The effective pressure
amplitude extracted of 115 kPa provided a good description of the dynamics of the
system. The agreement between experiments and simulations was best for more pits
and high applied power, i.e. for high number of nucleated bubbles. As expected, a
higher number of small sized bubbles appeared in simulations than in experiments,
as the minimum bubble radius that the experimental apparatus could detect was 0.5

um.

found in earlier studies [57].

In all the cases examined the whole OH- radical production was found to come
from bubbles smaller than resonance size, i.e. smaller than 15 ym, and mainly from
those with a radius around 5 um (see Fig. 3.23, 3.24, 3.25). In particular, higher
effective pressure amplitudes resulted in smaller sizes of the bubbles giving the peak
chemical production. This effect is dominant with respect to differences in bubble
volume and the surface area of the bubble across which radicals diffuse.

The experimental rates span over one decade, while the theoretical rates shown in
Figure 3.22 span six decades. The reason for this is that the experimental precision is
much lower than that of the numerical calculations, hence the strength of combining
these two approaches.
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Figure 3.20: Bubble size distribution histograms at high power (0.981 W) for three
pits. From experiments (lower figure), and from simulations (upper figure) with the

deduced effective pressure (115 kPa), which gives the best fit to the observed bubble
distribution.
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Figure 3.21: Effective driving pressure felt by the bubble population as a function
of the applied power. These values were derived from our fitting procedure between
experimental and calculated PDF of the radii (see Fig. 3.18). For different number of
pits, bubbles started to appear for different applied powers in experiments, although
corresponding to the same deduced effective pressure (around 125 kPa). In the one-
pit configuration, the effective pressure monotonically grew with the electric power.
In the two- and three-pit cases the effective pressure initially had a similar behavior,
but it abruptly decreased when the bubbles started to migrate towards the center point
of the pit array above 0.657 W and 0.914 W respectively.

It must be noted that our spherical bubble model overestimates the reaction rates
measured in the experiments. This is perhaps not surprising given that the many fac-
tors that induce non-spherical collapse and therefore limit the compression of the gas
are absent from the simulation. The simulations should be regarded as establishing
an upper limit to the reaction rates. In principle, it may be thought that non-spherical
bubble models could reduce the gap between simulations and experiments, although
the complexity of the experimental situation will probably lie beyond any practical
model in the foreseeable future.
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Figure 3.22: Number of OH- radicals diffusing into the liquid, in each acoustic cy-
cle, as a function of pressure (upper figure) and applied power (lower figure), both
calculated from simulations. The calculated chemical production increased with the
effective pressure, but also depended on the PDF of the radii. In the two- and three-pit
cases, when the bubbles migrated towards the center point of the pit array (at 0.657
W and 0.914 W), more radicals were produced than when they remain near the pits
, although the effective pressure was the same (125 kPa). In the upper figure this
corresponds to the first branch of the two- and three-pit curves (below 125 kPa). The
right branches correspond to the initial rise of the power.
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Figure 3.23: One-pit case. Upper figures, light grey: calculated number of OH-
radicals diffusing into the liquid at each acoustic cycle per bubble, as a function of
the initial radius Rq for a single bubble (see Section 7.3 for the details). Upper figures,
black: PDF of the initial experimental distributions of the radii in the one-pit case, for
different applied powers. Lower figures, dark grey: PDF of the OH- radicals diffusing
into the liquid in each acoustic cycle, as a function of the initial radius. These values
were obtained by normalizing the number of the OH/cycle produced by every bin of
initial radii over the total number of OH/cycle from the specific distribution. These
lower figures can be seen as a combination of the two upper graphs. Simulations
showed that the most radical production came from bubbles smaller than resonant
size (15 pum). In particular, higher effective pressure values corresponded to smaller
sizes of the most active bubbles.
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Figure 3.24: Same as Fig. 3.23 for the two-pit case.
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Figure 3.25: Same as Fig. 3.23 for the three-pit case.

3.4 Summary and Conclusions

We achieved a more controllable and more efficient sonoreactor design by microfab-
ricating small pits on a silicon chip immersed in a small sonoreactor of the ultrasonic
bath type. Under the action of an ultrasonic field, the air trapped in the pits gives
rise to a stream of small bubbles which are responsible for the intense sonochemi-
cal activity. A rectified diffusion process is responsible for replenishing the air and
maintaining the activity of the pit.

We have shown that this modification of the solid surface yields considerably
higher conversion rates. We have measured the bubble size distribution at different
power settings and characterized its evolution during the acoustic cycle.

Simulations were carried out in order to give an estimate of the radical production
in the different power settings. By fitting the experimental and the calculated PDF of
the radii and minimizing the cumulative squared differences between the two, an es-
timate of the effective forcing pressure felt by the bubbles was found. In the two- and
three-pit cases the effective pressure dropped when bubbles started to migrate towards
the center point of the pit array. Simulations also allowed us to give a description of
the temporal evolution of the smaller bubbles below 3 ptm radius, compatible with the
experimental PDF. This turned out to be particularly relevant, as calculations showed
that the most OH- radical production came from the smaller bubbles around 5 um
radius. As a general trend, the calculated chemical rate increased monotonically with
the effective pressure.

Even though the numerical model considers spherical bubbles without interac-
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tion, an important strength lies in the possibility of taking the actual experimental
bubble size distribution (with its equivalent radius corresponding to non-spherical
bubbles) and giving information on the smallest bubbles that are below the experi-
mental observability. This computation can be considered as a useful complement
to the experiment since it permits one to estimate the local pressure value to which
the bubbles are exposed and which cannot be directly measured with the available
pressure sensors.

It may be possible to extend the present surface modification to larger scale
sonoreactors by supplying similar nucleation sites on larger surfaces and in a much
greater number. As a guide towards the development and optimization of these types
of reactors, it will be useful to investigate in greater detail several aspects such as pit
density, dimensions, mutual interaction and many others.
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Radical production inside an acoustically
driven microbubble *

The chemical production of radicals inside acoustically driven bubbles is determined
by the local temperature inside the bubbles and by their composition at collapse. By
means of a previously validated ODE model [1], based on boundary layer assump-
tion for mass and heat transport, we study the influence of different parameters on
the radical production. We perform different simulations by changing the driving
frequency and pressure, the temperature of the surrounding liquid and the composi-
tion of the gas inside the bubbles. In agreement with the experimental conditions of
new generation sonochemical reactors, where the bubbles undergo transient cavita-
tion oscillations [2], we mainly concentrate on the initial chemical transient and we
suggest optimal working ranges for technological applications. The importance of
the chemical composition at collapse is reflected in the model, including the role of
entrapped water vapor. We in particular study the exothermal reactions taking place
in Hy and Oy mixtures. At the exact stoichiometric mixture 2:1 the highest internal
bubble temperatures are achieved.

*Submitted to Ultrason. Sonochem. as: [Laura Stricker and Detlef Lohse, Radical production inside
an acoustically driven microbubble].
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4.1 Introduction

An acoustically driven microbubble can produce extreme conditions of temperature
and pressure, thus giving rise to emission of light ("sonoluminescence”, SL ) [3-7]
and chemical conversions, involving the gas inside the bubble and the surrounding
liquid (“sonochemistry”) [8—13]. Chemical reactions also play the main role in stabi-
lizing single sonoluminescent air bubbles [14, 15]

The chemical output, as well as the light emission, is highly influenced by the
experimental parameters such as the driving pressure and frequency, the initial satu-
ration concentration, the liquid temperature and pressure and the kind and amount of
dissolved gas. For technological applications, a deep understanding of these depen-
dencies is crucial in order to optimize the radical production.

A number of studies of the frequency effect have been published, some with con-
flicting results. Experiments on multi-bubble systems (MBSL) reported an increase
in OH radical production with increasing frequency [16, 17] up to an optimal value
around 300-400 kHz [18, 19]. On the other side, experiments on single sonolumines-
cent bubbles (SBSL) revealed that the radical production decreased as the frequency
increased [20]. These two results may seem contradictory but can be explained con-
sidering that, at low frequency, the bubbles grow bigger and their collapses are more
violent, often leading to transient cavitation. Therefore each bubble undergoes only
few oscillations before fragmentation at these low frequencies and it is mainly filled
with water vapor [21, 22]. Conversely, at high frequency stable cavitation is generally
the main form of cavitation: bubbles exist for a long period of time and they contain
mainly the gas originally dissolved in water [21, 23]. Moreover, the different sizes
of the nucleated bubbles have to be considered: the bubbles are smaller at higher fre-
quency and therefore possibly more chemically active [2]. Bubble-bubble interaction
and its induced flow could also play a role on the chemical activity, which is however
not yet understood.

Other relevant parameters to the radical production are the conditions of the lig-
uid. It has been calculated that there is an optimal bulk temperature for radical
production both with air [24] and argon bubbles [25]. This trend is related to the
competing effects of the entrapped water vapor, that decreases the bubble temper-
ature at collapse [26] but also increases the amount of reactants. This trend was
retrieved in experiments both with water [16, 18, 27] and organic solvents, such as
methanol/water mixtures [28].

The dependence of the radical production on the ambient pressure has been stud-
ied both experimentally [29, 30], and theoretically [31], showing that decreasing the
ambient pressure has the same effects than increasing the driving amplitude, as a
higher radical production follows [18, 20]. Some authors reported an asymptotic be-
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havior of the oxidants production with increasing driving pressures and ascribed it to
the entrapped vapor [32].

Many authors examined the effect of the kind and composition of the dissolved
gas, both experimentally [18, 19, 33-35] and numerically [25]. Studies of different
kinds of noble gases [33, 34] have established a correlation between the light emis-
sion, and therefore the temperature at collapse, and the thermal conductivity of the
gas; as the latter increases, more heat can escape from the bubble at collapse, thus
reducing the peak temperature. Investigations over different mixtures of a noble and
a diatomic gas reported higher reaction rates for large percentages of the noble gas,
both from experiments [18, 19] and numerics [25]. This behavior was ascribed to
the larger adiabatic exponent Y of the mixture: as 7 rises, so does the temperature at
collapse.

However, direct quantitative comparisons between the mentioned theoretical stud-
ies on single bubble sonochemistry and experiments have always been problematic.
Few experimental data are available on the radical production of a single air bubble
in water [36, 37]. Such experiments are difficult to perform in controlled conditions,
because of the low amount of radicals produced per cycle and the long operating time
required to detect any chemical output (some hours). In order to compare calcula-
tions with experiments, theoretical studies mainly concentrate on steady cavitation
[38]. Some numerical papers include data on the early transient phase [39, 40] but,
to our knowledge, no systematic parametric study has been published on that yet.

Nevertheless, we believe that such a study can be crucial for technological appli-
cations, as in new generation efficient sonochemical multibubble reactors the bubbles
are nucleated from oscillating menisci and present a lifetime of few acoustic cycles
[2]. In our previous work [2], we considered each bubble as an independent sono-
chemical reactor and we used the bubbles themselves to measure the effective driving
pressure. In the present work we concentrate on the transient state and we carry on an
extensive scan of the parametric range. We also examine the temperatures inside the
bubbles and we try to correlate it to the radical production for different gases. Yasui
etal. [32, 40] calculated that, for air bubbles, there is an optimal range of bubble tem-
perature at collapse (between 4000-6500 K) where oxidants production is maximum.
If the temperature raises too much (above 7000 K) the sonochemical rate decreases
due to oxidizing nitrogen reactions. Our results confirm this observation. Moreover,
we found that under that threshold, the relevant element to chemical conversion is the
temperature, as its increase always corresponds to an increase in the chemical output.
Over that threshold, the dependence is not so clear anymore and other elements, such
as the reactants concentration, become more relevant.

In our study, we use the simplified ODE model based on boundary layer approx-
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imation, previously developed in Refs. [26, 41, 42] and validated in Ref. [1], which
was also found to be in good agreement with results by Storey and Szeri [43]. This
model includes the Rayleigh-Plesset equation for the radial dynamics of the bubble,
van der Waals law for the inner pressure, the energy equation for the temperature, heat
and mass fluxes, water evaporation/condensation, changes of transport parameters ac-
cording to changes of the mixture composition and a complete set of non-equilibrium
chemical reactions for gas and water.

Despite the high level of simplification, this model manages to reproduce various
features of chemical reactions, such as the explosive nature of stoichiometric mix-
tures of oxygen and hydrogen. Therefore we are confident that this approach could
lead to realistic estimates of the radical production rate of single spherical collapsing
bubbles and considerable increased efficiencies.

4.2 Model

We use an ODE model, based on the boundary layer approximation, previously de-
veloped in [22, 41, 42] and validated in [1]. We give here a summarizing description
and we refer the reader to those papers for additional details.

We assume that the bubble contains a perfect gas with a spatially uniform tem-
perature and pressure, i.e. low Mach numbers. We also assume spherical symmetry
and shape stability, thus restricting our study to a range of parameters where these
assumptions are reasonable [44, 45]

We use the Rayleigh-Plesset equation to describe the radial dynamics of the bub-

ble:
<1 —R>RR'+3 (1 —R>R2
c 2 3c
“4.1)

1 R ;
=—|14+- — P — P(2 —_——— .
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The dot denotes time derivatives, R is the bubble radius, c is the speed of sound, p
and v are the density and the kinematic viscosity of the liquid respectively, o is the
surface tension, p. is the static pressure and P(r) = P, cos ot, with P, the acoustic
driving amplitude and f = @ /27 the frequency.

The gas pressure inside the bubble p is calculated from a modified van der Waals
equation of state taking into account the gas inertia [42]:
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in which N, is the total number of gas molecules, pp is the gas density, kg the
Boltzmann constant, and B the molecular co-volume.

The temperature 7 is determined by means of an energy balance over the bubble
volume:

E = Q_pV+Z(hW,i+ef()rm,i)N;17 (43)
i

where E is the total energy of the bubble, V is the bubble volume, Nid the number of
particles of component i diffusing inside the bubble per unite time, A,,; the molecular
enthalpy of component i at the cold bubble wall and e, ; its enthalpy of formation.
The net heat absorbed by the bubble per unit time Q is provided by

To—T
lzh

Ry R
I, = min (, /\ny’n) 4.5)

with A,,;, the thermal conductivity of the gas mixture, /;; an estimate of the thickness
of the thermal boundary layer inside the bubble [41, 42] and 7j the temperature of
the liquid. Similarly the diffusive flux of component i is expressed by

O = 47R? Aiy , (4.4)

N = 4mR2D; M0, (4.6)
id

. IRD; R
lig= R 4.7
4 = min ( ] 7() 4.7

with D; the mass diffusivity of specie i in the mixture of all the other species, /; 4 its
mass diffusive boundary layer thickness, n; the time dependent concentration of par-
ticles of specie 7 per unit volume and n; o the respective equilibrium concentration at
bubble wall. For the moderately soluble species, i.e. Hy, O, N> and argon, n; o = n;
derived from the saturation of the liquid at infinite. For the highly soluble species,
that is all the others except water, we take n; o = 0. For water, the equilibrium con-
centration n; ¢ is derived from the saturation pressure of the vapor at temperature Tp:
nw,0,0 = P,(To) /kpTpy. This treatment incorporates both evaporation/condensation at
bubble wall and vapor/water diffusion from the wall to the core of the bubble. Details
of calculation of transport parameters A,;;,, ¥ and D; can be found in Ref. [42].

As chemical reactions take place, the total energy of the bubble E is not purely
thermal but it is given by:

E= Z(eth,i + eform,i)Ni s (4.8)
i
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with e, ; the thermal energy per molecule, calculated following Ref.[42]. Therefore
Eq.(4.3) becomes

. aelh / . . . .

TY 57 Ni=0=pV+ Y (hwi+eromiNi +V Y rjAE; =) emiNi,  (4.9)
i i j i

where AE; is the energy variation associated to reaction j, taken as positive for

exothermal reactions, negative for endothermal ones. N} is the change in the number

of particles of specie i per unit time, due to chemical reactions, expressed as

NE=VY aijrj, (4.10)
j

in which ¢ ; is the stoichiometric change of specie i in reaction j and r; is the net
rate of reaction j, given by
ry=7rfi—"rpj- (411)

Here ry ; and r,, ; are the forward and the backward rate respectively, calculated by
means of Arrhenius law, following the reaction scheme of Ref. [42]. For eg., for a
reaction of the kind A+B<«>C+D

. Es;
ry.j = kg jnangT " exp <—]€ij) ; (4.12)
B
C Ep;
rp,j = kp, jncnpT " exp T ) 4.13)
B

where ky j, kp j, cr.j and ¢ ; are listed constants.

4.3 Results

The radical production is strongly affected by the driving parameters as well as by
the composition of the gas mixture inside the bubble. Though the dynamic and the
thermal equilibrium are generally reached quite quickly (<30 cycles), the chemical
steady state can require hundreds or thousand cycles to be achieved. By definition,
when the equilibrium is reached, the net flux of all chemical species from the bubble
to the liquid becomes zero. Therefore the number of radicals diffusing inside the lig-
uid strongly depends on the considered part of the transient. In the present work, we
mainly focused on the early transient because in last generation multi-bubble sono-
chemical reactors the bubble life time was estimated around one acoustic cycle, due
to splitting and recombination phenomena [2].Two different quantities were exam-
ined to estimate the radical production: the peak value and the diffusion rate, i.e. the
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number of radicals diffusing into the liquid per time unit. The peak value provides a
good upper approximation for the radical outcome in one cycle, as most bubbles will
disappear after implosion, thus releasing their content inside the liquid. Nevertheless,
the diffusion rate is the most relevant parameter, when we wish to compare the effi-
ciency of devices operating at different driving frequencies or to study the long term
behavior.

4.3.1 Effects of the type of gas
Temperature, composition at collapse and O, OH and H production

We studied bubbles initially composed of argon, hydrogen, oxygen, air and nitrogen.
Depending on the operating frequency and the kind of radicals that one is interested
in, it can be more convenient to use one or another gas. Among these gases, for H
radicals, the most effective one, at any frequency is argon, for OH radicals it is O,
below 40 kHz and argon above, for O radicals it is O, under 15 kHz and argon above,
see Fig. 4.1, in which we plot the peak OH production for different gases together
with their peak temperature. When the temperature at collapse is low (as it hap-
pens at high frequency), the radical production mainly depends on the temperature
itself, when it is high (as it happens at low frequency), the main factor contributing
to the radical production is the number of reactants at collapse and, in particular,
water vapor. Above 10 kHz, the gas with the highest temperature is argon, because
it is the only monatomic gas of the analyzed ones. Therefore the adiabatic expo-
nent is 1.67, as compared to 1.4 for diatomic gases. However, at very low frequency
(under 10 kHz) argon bubbles do not result in the highest temperatures at collapse
anymore, because also water vapor and exothermal reactions of H, O and OH en-
hanced by the dissociation of H, and O, play a role. The peak temperature follows
the order: Hp > air > Ar > O, > N,. Nj, O, and air have the same adiabatic ex-
ponent but different peak temperatures at low frequency. It is therefore clear that
the difference in the adiabatic exponent is not the only source of difference in the
thermal behavior of the considered gases. Other relevant parameters are the thermal
and mass diffusive coefficients. To understand these trends we have to consider the
diffusive properties of the gases. From our calculations for binary mixtures we found
that the mass diffusivity coefficients of water vapor inside the examined gases during
the collapse were Dyo > Dyir > Doa > Dya > Da, and the thermal conductivities
were Kyo > Kox > Kgir > Kyo > Kyar. A higher value of vapor diffusivity corre-
sponds to a lower quantity of water vapor entrapped inside the bubble at collapse (see
Fig. 4.2) and therefore to a higher peak temperature [22]. The reasons are both the
lower polytropic exponent of vapor respect to gas and the endothermic nature of wa-
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Figure 4.1: Maximum temperature (top) and number of OH molecules (bottom) dur-
ing the first oscillating cycle of a bubble with the initial composition as indicated in
the legend, as function of frequency (Rg=6 tm, Pa=1.4 atm). Above 40 kHz, the gas
with the highest radical production is argon, under 40 kHz it is O,. However, above
30 kHz, using a mixture of H,-O, with stoichiometric water composition gives the
highest chemical output, due to the activation of strongly exothermal hydrogen and
oxygen chain reactions.
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Figure 4.2: Number of water vapor molecules as function of time during the first
oscillating cycle of a bubble initially composed of H» (solid) and argon (dash-dot)
with Rg = 6 um, driven at P, = 1.4 atm, f = 7 kHz, with 7., = 20°C. The diffusivity
of water in H; is higher than in argon, therefore less vapor is trapped in H, bubbles
at collapse. At low frequency, when the vapor has more time to diffuse inside the
bubble during its expansion, this turns into a higher temperature peak for H, bubbles
(see Fig. 4.1).

ter dissociating reactions. Conversely, a higher thermal conductivity should provide
a higher heat flux escaping from the bubble at collapse, therefore a lower tempera-
ture. In the case of Hy and argon bubbles, the temperature at collapse is lower for
the latter and this is a proof of the higher effect of water mass diffusion respect to
heat diffusion. The diffusivity of vapor inside H; is almost 10 times larger than in
argon, having an overwhelming effect respect to the different polytropic exponents
and thermal conductivities. This becomes relevant at low frequencies, when the water
vapor has more time to enter the bubble [22]. The dissociation reactions of H, and
O,, activated by the high temperatures reached at low frequency, also have a role, as
they provide further reactants for exothermal recombination reactions of H, O and
OH. Despite their high activation energy, the overall absorbed energy AE of H; and
O, dissociation reactions is much lower than the overall released energy of H, O and
OH exothermal reactions. Therefore the global effect is an increase in temperature.
This phenomenon is more relevant when the adopted gas is H, or O,. Conversely
to what was previously believed [34], the maximum temperature reached during the
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cycle is not always the main factor to determine the sonochemical production. This
is true only at low temperatures. At high temperatures, the most relevant element
is the amount of reactants available for dissociation, that is water vapor, O, and Hj.
Therefore we can conclude that, at low frequencies (corresponding to high tempera-
tures), the sonochemical production of O and OH radicals is mainly affected by the
composition of the bubble at collapse, while, at high frequencies (corresponding to
low temperatures), it mainly depends on the peak temperature itself.

Effects of argon percentage in air - argon mixtures: role of temperature and
composition at collapse on N compound production

We examined a range of mixtures of air and argon from 0% to 100% Ar. At 200 kHz
the temperature raises monotonically because the polytropic exponent of the mixture
increases with the argon percentage. The chemical activity starts only for argon per-
centages higher than 40%, corresponding to a temperature at collapse of 2200 K (see
Fig. 4.3). The production of O, OH and H radicals follows the temperature trend,
while the production of N, NH, NH;, NH3, NO and NO, has a maximum at 90% Ar
and decreases to 0 for pure argon mixtures, as no nitrogen is then inside the system.
This result is particularly relevant for technological applications, as most sonochem-
ical reactors operate around this frequency. It is also remarkable that, in this range
of temperatures (below 5000 K), when the rate of nitrogen reactions is still very low,
the key factor to nitrogen products is indeed the peak temperature and not the amount
of reactants, as one could expect. At 20 kHz, this trend changes, because the tem-
peratures are much higher. In agreement with Yasui et al. [40], we found that, after
7000 K, nitrogen reactions are enhanced, becoming more relevant than water dissoci-
ation (see Fig. 4.4). Correspondingly, the amount of reactants for nitrogen reactions
becomes more important and the optimal peaks of radical production are shifted to-
wards lower amount of argon in the mixture. After 7000 K, the amount of H,O and
OH as well as the temperature, still grows with the argon percentage, though at a
lower pace, because endothermal nitrogen oxidation reactions consume them. The
maximum amount of NO and NO;, is found at 20% Ar, while the peak production of
N and NH, comes from 60% Ar mixtures. Considering all the total radical produc-
tion, the optimal argon percentage range at 20 kHz is between 40% and 60% Ar. For
industrial application, one should remember that, lowering the frequency, the optimal
concentration of argon decreases.
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Figure 4.3: Maximum temperature (a), number of OH molecules (b) and number of
NO molecules (c¢) during the first cycle of an air-argon bubble, as function of Ar%, at
200 kHz (Ry =6 um, P, = 1.4 atm, 1., = 20°C). At high frequency (corresponding to
low temperatures), the radical production is mainly influenced by the peak tempera-
ture. Therefore, the optimal composition for radical production is around 90% Ar.
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Figure 4.4: Maximum temperature (a), number of OH molecules (b) and number of
NO molecules (c¢) during the first cycle of an air-argon bubble, as function of Ar%, at
20 kHz (Ry = 6 um, P, = 1.4 atm, T., = 20°C). At low frequency (corresponding to
high temperatures), the radical production is mainly influenced by the composition
of the bubble. Therefore, the optimal composition for radical production is around
20% Ar.
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Effects of O, percentage in H, - O, mixtures: role of H, and O, dissociating
reactions

We examined the whole range of binary gas compositions, from pure H, to pure O;.
At 200 kHz, when the temperature remains lower than 2000 K for any composition,
no reactions are initiated inside the bubble. Thus the only effect of adding O, to the
mixture is changing its diffusive properties, in particular lowering the thermal con-
ductivity, as O, has a lower thermal conductivity than H,. The water mass diffusivity
into the gas changes as well, but it is a relevant parameter mainly at low frequencies
(lower than 20 kHz), when the vapor has more time to diffuse inside the bubble dur-
ing its expansion [26]. At 200 kHz, when the O,% increases, the reduction in thermal
conductivity results into a slightly higher temperature at collapse, because the heat
produced inside the bubble cannot escape easily (see Fig. 4.5).

At 20 kHz a completely different behavior is found: the maximum temperature
is reached for the a mixture of 2/3 H, and 1/3 O, in volume, that is the mixture with
the stoichiometric composition of water vapor. In 6 um bubbles, such a mixture
reaches a peak temperature of 11900 K, which is higher than those of both pure O,
(9322 K) and pure H, (6938 K). In order to explain this phenomenon, we examine
in the following a simplified example of chain reaction occurring in a Hp-O, mixture

11j Reaction cj Ej/k AE;
1 Ho+M—-+M+H+H -0.8 52177 -436
2 02+M—=M+0+0 -1.3 59893 -498
3 H+0,—+0+O0H -0.7 8576 -70
4 O+H,—H+OH 2.7 2200 -8
5 OH+H; - H+HO 1.5 1726 62
6 H+H+M—-H+M -1 0 436
7 O0+0+M—=02+M -1 0 498
8 H+O0O+M—=OH+M -1 0 428
9 H+OH+M—-H,O+M -2 0 498

Table 4.1: Example of chain reactions in a H»-O> mixture. c; are the power coeffi-
cients of the temperature in Eqs. (4.12), (4.13), E;/k are the activation temperatures,
expressed in K, and AE; are the reaction energies in kJ/mol, positive for exothermal
reactions and negative for endothermal ones.
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Figure 4.5: Maximum temperature (top) and number of H molecules (bottom) during
the first cycle of a H»-O, bubble, as function of the O, percentage in the initial bubble,
at 20 kHz (solid) and 200 kHz (dashed) (Ry = 6 um, P, = 1.4 atm, T., = 20°C). At
20 kHz, when the temperature is high enough to activate the strongly exothermal
dissociating reactions of H and O,, the mixture with the stoichiometric composition
of water (2/3 Hy, 1/3 O,) provides the highest temperature and radical production.
This mimics the well-known explosive nature of such mixtures.
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(see Tab. 4.3.1) and we refer the reader to Ref. [42] for a more complete scheme
of reactions taking place inside a bubble with this initial composition. Reactions
1 and 2 are the initiating endothermic steps. Given their high activation energies
E)/kg = 52177 K and E; /kg = 59893 K, it is crucial that a minimum temperature is
reached (around 2000 K and 2200 K respectively). Under these values the coefficients
exp(—E;/kgT) of Arrhenius law are too low (< 10~ ') for dissociation to take place.
Conversely, when the temperatures is high enough to allow the initial dissociation, the
produced H and O radicals become reactants for the propagation reactions 3-6, among
which 3 and 4 are branching reactions, as they increase the chain carriers (H, O,
OH). At the same time, exothermic termination reactions 6-9 are initiated, removing
chain carriers. The overall effect of the chain reaction is a strong release of energy
with the consequent increase in temperature that we observe in simulations. The
termination reactions have a very low inversely proportional temperature dependency,
as their activation energy E;/kg is zero and their c; coefficient is negative, while the
initiation reactions are strongly dependent on the temperature. Therefore, when the
temperature increases, the propagation reactions overcome the termination reactions,
resulting into an increased number of H, OH and O radicals.

This results appears particularly relevant, as it reproduces the explosive well
known behavior of stoichiometric mixtures of H, and O, thus providing a further
strong validation for the code. Moreover, it can be used in technological applica-
tions for optimization purposes. The peak value of H radicals follows indeed the
temperature trend, having a maximum in mixtures around 34% O, while O and OH
radical curves present a shift, with a maximum respectively at 70% O, and 60% O,.
Therefore we can conclude that in low frequency reactors there is an optimal range
of composition for the global radical production, between 40% and 60% O,.

4.3.2 Effects of the driving frequency

We examined a range of ultrasound frequencies from 7 kHz to 200 kHz. When the ul-
trasound frequency increases, the peak production of all chemical species decreases,
together with the maximum temperature reached during the cycle (see Fig. 4.6). In
argon bubbles a maximum peak temperature appears at 15 kHz (see Fig. 4.1). The
explanation relies on the fact that, when a lower frequency is applied, the bubble has
more time to grow, generating a more violent collapse afterwards. However, below a
certain frequency, the longer duration of the expansion gives the bubble the time to
cool and the lower inner pressure enhances water vapor entrapment. As the number
of particles grows, the heat capacity raises, lowering the heat entering the bubble at
the following collapse therefore the peak temperature. This phenomenon was first
theoretically explained and at the same time observed experimentally as a reduction
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Figure 4.6: Maximum temperature (a), number of OH molecules (b) and OH dif-
fusion rate (c) during the first oscillating cycle of an air bubble, as a function of
frequency (Ryp =6 um, P, = 1.4 atm, T, = 20°C). The peak temperature and radical
production decrease with the frequency, because the bubble has less time to grow and
the collapse is weaker. However, the number of collapses per unit time increases with
the frequency. Therefore high sonochemical rates can be achieved up to 60 kHz.
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of the emitted light in SBSL [26]. From the sonochemical point of view, the increased
amount of water vapor provides a higher number of reactants for water dissociation,
leading to an increased production of H, OH and O. Despite the behavior of air, O,
H, and N, seems qualitatively different, as no peak appears in the considered range
of frequencies, this is not the case, as a similar peak appears at lower frequencies. We
did not include those results because such frequencies are not used in sonochemical
reactors, due to technological problems (temperature control, noise, etc.).

However, for a long term analysis, if we wish to compare sonochemical reac-
tors operating at different frequencies, the relevant quantity is the sonochemical rate,
i.e. the number of radicals diffusing into the liquid per unit time. This quantity will
depend both on the absolute peak production at each collapse (decreasing with the
frequency) and the number of collapses per unit time (increasing with the frequency).
The combination of these two competing effects, leads to a maximum in radical pro-
duction rate curves in certain ranges of frequencies, changing with the bubble size.
As the ultimate task of our analysis is to make recommendations for multibubble
reactors, we will point out the optimal frequency range considering the curves for
different bubble sizes and different chemical species. For O,H and OH radicals the
optimal production rate is localized in the range between 7 and 60 kHz, while for
NO; it is between 20 and 40 kHz (see Fig. 4.6). For N, NH, NH, and NHs, the
radical rate does not present any maximum, but monotonically decreases when the
frequency increases, as the peak production does. Therefore we can conclude that
the optimal operating range for such single-bubble based sonochemical reactors is
between 20 kHz and 40 kHz.

4.3.3 Effects of the ambient radius

We considered the range between 1 um and 12 um, that is the range of interest in
new generation efficient multibubble reactors of Ref. [2]. We found that, given a fixed
driving pressure, the ambient radius of the most chemically active bubbles decreases
when the frequency increases (see Fig. 4.7) and, given a fixed driving frequency, it
decreases when the driving pressure increases 4.8. Therefore, from the technological
point of view, it would be desirable to control the size of the nucleated bubbles; for
eg., with reactors working at 200 kHz the optimal size would be 6-7 um. In the case
of bubbles generated from acoustically driven air pockets entrapped inside artificial
crevices [2], this should be achievable by changing the dimension and the shape of
the crevices themselves
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highest H radicals production during the first oscillating cycle of an air bubble (P, =
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Figure 4.8: Maximum number of H radicals during the first oscillating cycle of an air
bubble, as function of the driving pressure and the ambient radius, at f = 200 kHz.
As the pressure increases, the most active bubbles become smaller.
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Figure 4.9: Maximum temperature (top) and number of OH molecules (bottom) dur-
ing the first oscillating cycle of an air bubble, as function of the driving pressure (f
=20 kHz, T.. = 20°C). The chemical production and the temperature increase with
the driving. Below 1.1 atm, corresponding to a collapse temperature of 2200 K, no

radicals are produced.
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4.3.4 Effects of the driving pressure

We examined a range of driving pressures from 1 to 1.4 atm both at 20 kHz and
200 kHz. The peak production of all the chemical species increases with the driving.
Under a certain pressure threshold, rising with the frequency, no radicals are pro-
duced. In air bubbles, at 20 kHz this threshold is around 1.1 atm, while at 200 kHz
it is around 1.3 atm (see Fig. 4.9). Both these conditions correspond to peak temper-
atures around 2200 K. Under this value no chemical activity was recorded, because
the coefficient exp(—E;/kpT) in Eq.(4.12) for the first reaction of water dissociation,
H,O+M— H+OH+M, was too low (< 10~'"). The same trends were found in O,
bubbles, with a small shift in the pressure thresholds for sonochemical activity incep-
tion towards higher values, due to the slightly lower temperatures reached with this
gas.

4.3.5 Effects of the liquid temperature

We examined a range of temperatures from 5°C to 90°C. When the liquid temperature
increases, also the pressure of the vapor inside the bubble does, while both viscos-
ity and surface tension decrease, together with the forces they oppose to the bubble
growth. Therefore the maximum radius grows bigger, more vapor enters the bubble
and is entrapped at the following collapse. The higher number of water molecules
reduces the temperature at collapse. Moreover the radius after the collapse remains
bigger, further decreasing the maximum temperature. Conversely, the big amount of
water molecules provides many reactants for water dissociation reactions. At 20 kHz,
for a3 um air bubble, the combination of these two competing factors leads to a peak
in H, OH and O production at T = 65°C. These value shifts to lower ones as the
bubble size increases (see Fig. 4.10). Conversely, they shift towards higher tempera-
tures when the frequency increases. At 200 kHz, the peak for a 3um bubble is around
a liquid temperatures of 75°C because the time that bubbles have to entrap vapor is
lower and therefore a higher temperature is requested.

We examined also O, and argon bubbles, in order to exclude the nitrogen chem-
istry for understanding its role. In pure O, bubbles, we found exactly the same trends
than in air bubbles. This supports the idea that the change in radical production with
the ambient temperature is not due to the nitrogen chemistry but mainly to the water
vapor entrapped in the system at collapse and the chemical reactions involving it, i.e.
oxygen and hydrogen chemistry.

With argon bubbles, at high frequency (200 kHz) we found the same trends as
with air bubbles, both for temperature and radical production, with a shift of the
peaks towards lower liquid temperatures (between 45°C and 60°C for a 3 um bub-
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Figure 4.10: Maximum temperature (top), and number of OH molecules (bottom)
during the first oscillating cycle of an air bubble, as a function of the liquid temper-
ature (f = 20 kHz, P, = 1.4 atm). As the liquid temperature increases, more vapor
enters the bubble, lowering the collapse temperature but providing a higher number
of reactants for water dissociation. The combination of these two competing effects
gives an optimal liquid temperature around 60°C.
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Figure 4.11: Maximum temperature (top), and number of OH molecules (bottom)
during the first oscillating cycle of an argon bubble, as a function of the liquid tem-
perature (f = 20 kHz, P, = 1.4 atm). As the liquid temperature increases, more
vapor enters the bubble, providing a higher number of reactants for water dissocia-
tion. However the bubble temperature does not decrease, due to the activation of Hp
and O, strongly exothermal dissociating reactions. The combination of these effects
gives an optimal liquid temperature around 70°C.
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ble). As the temperature reached inside the bubble is higher with argon than with air
bubbles, more heat is available for evaporating the surrounding water and therefore
lower liquid temperatures are required. However, at low frequency (20 kHz), when
the temperature at collapse rises over 7000 K, a completely different thermal behavior
appears with argon bubbles as compared to air and O, bubbles: the bubble tempera-
ture presents a maximum when the liquid temperature is around 50°C. Consequently,
also the chemical peaks are shifted towards higher liquid temperatures (between 60°C
and 80°C for a 3 um bubble) (see Fig. 4.11). In order to understand this unexpected
behavior, we artificially turned off, one by one, all the chemical reactions and we
found that this temperature peak is due to the highly exothermal hydrogen and oxy-
gen chain reactions of the kind described in Tab. 4.3.1. In particular, these reactions
become important when the temperature is enough high to activate the initiating H»
and O, dissociating reactions (reaction 1 and 2 in Tab.4.3.1) and when the number
of reactants is enough high and close to the stochiometric composition to allow the
chain propagation.

As the diffusivity of water inside argon is much lower than in air, a higher amount
of water molecules are entrapped inside the argon bubble. Below a certain threshold
of entrapped vapor, this turns into lower temperature as compared to air and O,.
When the liquid temperature rises and so does the amount of the vapor, the number
of H and OH radicals produced and recombining into H, and O, at low temperature
becomes relevant. When they are newly dissociated due to the high temperature,
they give origin to exothermal chain reactions thus abruptly increasing the peak tem-
perature. Once again the effect of exothermal hydrogen and oxygen chain reactions
appears crucial to understand the thermal behavior of the bubbles and its chemical
feedback, when the temperature is high enough to activate them, i.e. at low fre-
quency.

For technological applications, we can conclude that, at high frequency (200 kHz),
the optimal range of the liquid temperature is between 60°C and 80°C for pure air,
40°C and 60°C for pure argon, thus around 60°C for argon - air mixtures. At low
frequency (20 kHz), the optimal range is between 50°C and 70°C for pure air and
from 60°C and 80°C for pure argon, therefore between 60°C and 70°C for argon-
air mixtures. In both cases a liquid temperature around 60°C can enhance chemical
production.

4.4 Summary and conclusions

We examined the radical production during the early transient of a single cavitation
bubble. This choice was made in order to match the operating conditions of a new
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generation of sonochemical reactors [2], where the bubble life is of few acoustic
cycles. We wanted both to understand the mechanisms leading to radical formation
and to provide optimal operating conditions for technological applications.

We found that the chemical production is strongly affected by two factors: the
gas temperature and the composition of the bubble at collapse. Below 2200 K, there
are hardly any chemical reactions taking place. Between 2200 K and 7000 K, the
most relevant factor is the temperature, while above 7000 K it is the composition of
the bubble at collapse. In particular, in this temperature range, we underlined the
importance of water vapor, H, and O, dissociating reactions, that all have feedback
on the temperature. The dissociation of water is a strongly endothermal process and
reduces the temperature of the bubble, while the dissociation of H, and O, are the
initiating steps of globally strongly exothermal chain reactions that increase abruptly
the temperature, thus enhancing, in return, other chemical reactions. We found that
mixtures of Hy and O, with the stoichiometric composition of water give origin to a
peak in temperature respect to the other compositions, whenever the temperatures are
high enough for H, and O, dissociation to take place thus initiating the exothermal
chain reactions (low frequency). This reproduces the well known chemical explosive
behavior of such mixtures and provides a strong evidence of the reliability of the
adopted model.

In sonochemical reactors operating at low frequency (below 20 kHz), where the
maximum temperatures at collapse are above 7000 K, a good strategy to enhance
the radical production is to use such mixtures of H, and O,. Conversely, in high
frequency reactors (around 200 kHz), where the maximum reached temperatures are
below 7000 K, a good strategy to enhance the radical production is to add a large
amount of argon (around 90%), thus increasing the polytropic exponent of the mix-
ture and therefore the peak temperature.

From the study of the size of the most active bubbles, we discovered that an other
strategy could be to promote the nucleation of big bubbles in low frequency reactors
and small bubbles in high frequency reactors, for example by changing the size of
the pits from where the bubbles detach in reactors based on heterogeneous nucleation
from artificial crevices [2].

We also studied the effects of the driving pressure, the frequency and the liquid
temperature. We found that higher driving pressures correspond to higher tempera-
ture and radical production, while higher frequencies correspond to lower tempera-
ture at collapse and therefore lower radical production. The reason of this behavior is
that, when the frequency increases, the bubble has less time to grow, so the collapse
is less violent. However, the definition of sonochemical efficiency requires the evalu-
ation of the radical diffusion rate, i.e. the number of radicals diffusing into the liquid
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per unit time, in order to optimize the frequency. When we increase the frequency,
competing effects appear between the lower production per collapse and the higher
number of collapses per unit time. The combination of these two elements leads to
an optimal operating range between 20 kHz and 40 kHz.

For what concerns the optimal conditions of the liquid, competing effects appear
as well. When we raise the liquid temperature, the amount of water vapor entrapped
in the bubble at collapse increases. On one hand, this reduces the peak temperature,
because of the highly endothermic H,O dissociating reactions and the lower poly-
tropic exponent of the water vapor as compared to diatomic and monatomic gases.
On the other hand, the amount of reactants for water dissociation is also increased.
At high frequency (200 kHz), where collapse temperatures are below 3000 K, the
combination of these two competing effects results into an optimal liquid tempera-
ture around 50°C - 70°C for air and oxygen bubbles, shifted to 60°C - 80°C for argon
bubbles. At low frequency (20 kHz), where temperatures are higher than 7000 K,
a third factor comes into play, namely the effect of exothermal H, and O, dissoci-
ating reactions, particularly evident in argon bubbles because of the higher amount
of entrapped water as compared to air bubbles. As a general indication, heating a
sonochemical reactor to around 60°C should increase its radical production.

The present study could provide good indications to tune the working conditions
of a sonochemical reactor of the kind presented in Ref. [2] in order to enhance its
efficiency.
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Bubble growth by gas diffusion *

Given the importance of diffusive phenomena when one wishes to study bubble dy-
namics and sonochemistry, as a first step to include these phenomena in a full PDE
model, we developed a model to track the evolution of a bubble growing purely by
mass diffusion. We validated the code against the analytic solution and also against
experimental results, for the case of a bubble growing next to a wall. To this aim,
we introduced a geometric correction to the model, in order to keep into account the
disruption of the boundary layer due to the presence of the wall, and we found good
agreement with the experimental data.

5.1 Model

We consider a spherical bubble of gas immersed inside an infinite liquid medium.
The radial motion of the bubble is described by the Rayleigh-Plesset equation:

BV pe 3 (1= B L (1 R KA B2
cr, 2 3¢t N PL cr, cpdt PP ‘uLR R

(5.1)

Here time derivatives are denoted by a dot, R is the bubble radius, ¢; and py, are the

speed of sound and the density of the liquid, y, is the dynamic viscosity of the liquid,

*The experimental data present in this chapter are entirely due to Oscar R. Enriquez Paz Y Puente.
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o is the surface tension coefficient, p. is the liquid ambient pressure and p is the gas
pressure inside the bubble. We neglect the contribution of the vapor and the total
pressure inside the bubble p is regarded as spatially uniform, which is acceptable for
small Mach numbers. The gas inside the bubble is considered as a perfect gas and
viscous dissipations inside the bubble are neglected

In order to derive an equation for the pressure, we follow the procedure adopted
in Refs. [1]. We write the enthalpy equation for the gas inside the bubble in the
standard form [2]:

9
5, (Ph=p)+V-(phv) = -V-q, (5:2)

where p is the density of the gas, & is its enthalpy, v is its velocity field and q is the
heat flux vector from the bubble to the liquid. The perfect gas law equation holds,

therefore |

ph—p= ﬁpa (5.3)

in which 7y is the adiabatic index. By substituting (5.3) inside (5.2) we get
p=—(r=1V:[phv+q. (5.4)

Upon integration over the radial coordinate r, we find

1 |
v= =D+ 3. 5.5)

where ¢ and v are the radial components of ¢ and v respectively. By evaluating (5.5)

at the bubble wall r = R, we retrieve [1]:

3
[ypv+ (Y —1)qlr=r (5.6)

P:*IQ

Unlike in Ref. [1], here we cannot assess that v(R,t) = R, because a gas flux is
present. The rate of change of the mass of gas inside the bubble m is given by
tig = ATR*p[R —v(R,1)], (5.7)
therefore the velocity of the gas at the bubble wall can be expressed as
G
47R?p

Vg =R . (5.8)

We substitute it inside (5.5) and use the perfect gas law

p=pZT, (5.9)



5.1. MODEL 105

with # the universal gas constant divided by the molecular weight of the gas and T
the temperature of the gas, thus getting

3[(_%nmc

p:_E 4 47R?

+pR> +(y— 1)4 . (5.10)

r=R
The mass growth of the bubble is given by the concentration gradient at the interface,

d
i = ATR*DZE

5 (5.11)

K
r=R

in which ¢(r,t) is the gas concentration in the liquid, expressed in kg/m? and D is the
mass diffusivity of the gas inside the liquid. The heat flux at the bubble wall can be

expressed as

oT

dhr=—k5| . (5.12)

r=R

where k = k(T) is the gas thermal conductivity. Upon substitution of (6.15) and
(5.12) inside (5.10), we find the equation for the evolution of the gas pressure:
3 or

p=g -0k e e

The temperature distribution inside the bubble is given by the energy equation
(see Chap. 2)

v POT (0 2T L NIT] g
yIT [Bt + - ((}/ 1)k8r 3rp) 81’] p=V-(kVT). (5.14)

de

ar

+Y(—pR+%TOQD
R

This equation has to be solved imposing the two boundary conditions that the tem-
perature is regular at the bubble center and it remains undisturbed, equal to the tem-
perature of the liquid, 7. at the bubble wall:

T
il — 1
5 =0 (5.15)
T|,—g() = T (5.16)

The transport of dissolved gas in the liquid is described by the standard constant-
properties convection-diffusion equation:

dc  R’RO
€ LR pvee. (5.17)
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This equation is solved subject to Henry’s law at the bubble wall:
c¢(R,t) = Hp(R,1) (5.18)

where H is the Henry’s constant. For CO, at 20°C in water, H = 1.517 x 107>
kg/(m3Pa). Far from the bubble, the gas concentration is assumed to remain undis-
turbed at the initial value c... The following boundary condition is adopted:

gj(oo,t) =0. (5.19)

For the solution of the heat and gas diffusion equations (5.14), (6.13) we express
both T'(r,¢) and c¢(r,t) as truncated Chebyshev series

T M

T— ~ Z aszk, (520)
o k=0

c N

— = Zkazk, (521)

Coo j=0

and we use the same method described in Chap. 2 and in Ref. [3], i.e. a pseudo-
spectral collocation method. For details the reader is referred to that chapter.

5.2 Validation: analytical test case

In order to validate the present model, we derive the analytical solution of the diffu-
sion equation in the liquid, outside of a sphere with constant radius R:

gj = DV?c, (5.22)

valid for R < r < eo. At t = 0, an initial concentration field ¢(r,0) = co(r) is pre-
scribed. At the surface of the sphere, the boundary condition ¢(R,¢) = ¢,() holds.
Assuming shperical symmetry, we recast (5.22) as

d;(rc¢) = DA?(rc) (5.23)
and we perform the Laplace transform, finding

o S, reo(r)
33(%‘)—5(“3)—— D

(5.24)
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in which s is the Laplace variable and ¢ is the Laplace transform of c¢. By means of
the variation of parameters method [4] eq. (5.24) can be solved to find

G = m)W
e 2 [ g ) T

Here x is an integration variable, ®; and oy are two constants, to be determined by
substituting in (5.25) the transformed boundary conditions

(5.25)

é(R,s) = &s(s), (5.26)
E(r — ©0,8) = Coo /5. (5.27)
The solution is
. Rcse_,/s/D(r_R . [/ o~ \V/5/Dlr= . o(x)dx
r
rvD (5.28)
e*\/s/D(rfR) xe\/s/D(xR)CO(x)dx:| .
R
After inverting the transform, an expression for ¢(r,7) is found:
R(r—R) [ (r=R?*1__3p
= s - - d
c(nt) 2D /0 cs(t —T)exp [ “abr |° T
1 * (r—R)?
— — — d 5.29
TN {/R Xl =xleo(x)exp [ 4Dt } * (5:29)
o (x4+r— 2R)2
- /R x(x+r—2R)co(x)exp [— ADs dx p.

By substituting into (5.29) a constant value as initial and boundary condition ¢y(r) =
¢s(t) = Cp, a constant expression is retrieved: ¢(r,1) = Cy, as expected.
The correct time scale to use for the non-dimensionalization of the problem is
given by the analysis of the mass flux entering the bubble:
d c|r

4 —c
—( =znR? ~4nR*DE = )
dl<37r pc> T 5 (5.30)

in which 0 is the thickness of the boundary layer evaluated as § = v/Dr. By as-
sumption that pg remains approximately constant, i.e. neglecting surface tension

overpressure, we find
dR /D



108 CHAPTER 5. GAS DIFFUSION

By integration from 7 = 0 to oo, assuming that c|g remains constant, i.e. neglecting
again surface tension, the following expression is retrieved:

R(t) :Ro—zx/ﬁzc‘”;c’R. (5.32)
G

The total dissolution time #,;5, Which is also the time scale for the problem, is found

by setting R =0
1( ps RS
Laiss == — - 5.33
diss 4<Cm—C’R> D ( )

In order to validate the code, we considered a specific test case:

es(t) = C+ Bt (5.34)
¢(r,0) = CR/r (5.35)
1of e
X
MR =1
1 1.37] -
Oo R =103 :z:/
~ 1.34]
O 1.33]
0.5 i r/R - 2.25 19.5 20 20.5 21 i
r/R =39
0 L L L L L
5 10 / 15 20 25
t/t
0

Figure 5.1: Evolution of the normalized gas concentration field in the liquid vs the
normalized time, in the test case (5.34),(5.35) from simulations (blue) and from ana-
lytical solution (red), for different r/R = const; the normalization constants for con-
centration and time are co = C and fy = t;,, respectively.


creo



5.2. VALIDATION: ANALYTICAL TEST CASE 109
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Figure 5.2: Normalized gas concentration field in the liquid at ¢ /7y = 26.1 in the test
case (5.34),(5.35). r/R =1 corresponds to the bubble wall; the normalization con-
stants for concentration and time are cop = C and g = 45, respectively. Convergence

is verified, as an increase from 40 terms (light blue) to 80 terms (blue) in (6.20) results
into an almost perfect agreement between simulations and analytic results (red).

Upon substitution of (5.34),(5.35) inside (5.29), the following expression is found

for c(r,1):
c(rt) = RC+M{erfc< r—R> [t+ (V—R)2:|

T 2Dt

e )

We consider a CO; bubble with fixed radius R = 3um. The values of the constants
in (5.34) and (5.35) are chosen as C = H py with py = pe + 206 /Ry in which p. = 1
atm and B = 1/174,. Convergence was verified as the number of terms in (6.20)
and (6.19) increased (see Fig. 5.2) and a satisfactory agreement was found between
analytical and numerical solution (see Fig. 5.1).

(5.36)
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5.3 Bubble nucleating next to a wall

5.3.1 Experimental setup

A sketch of the experimental setup is shown in Fig. 5.3.

The system is composed of two stainless-steel tanks with volumes of 7 and 1.3
liters respectively. The larger one, the mixing tank, serves as a reservoir where a solu-
tion of water saturated with gas at pressure p; is prepared and stored. This mixture is
then transferred to the smaller observation tank where the experiments of controlled
bubble growth take place. A system of steel pipes and pneumatic valves connects the
tanks to each other, to the water and gas sources as well as to the drainage system
of the lab. At the beginning of the experiment, the observation tank is filled with
fully gas-saturated liquid at pressure p;. Then the pressure in the observation tank is
dropped to the value p, < pj, therefore the liquid becomes supersaturated and bub-
bles start to grow at various possible nucleation sites. On the bottom of the tank a
silicon wafer with artificial nucleation sites of radius R,; =10 um, has been placed,
similar to the substrates used in the experiments of Refs. [S—8]. These substrates have
shown to provide bubble nucleation at well controlled locations. The gas dissolved is
CO; and the liquid is water. This mixture is convenient due to the high solubility of
CO; in water ( ~1.6 gcoo : 1 kggop at T = 20°C and p = 1 bar) compared to other
gases.

The pressure p; in the mixing tank is controlled through a regulator placed on
the CO; line of the laboratory and it is measured with a pressure sensor read out by a
multi-parameter transmitter communicating with the general control interface.

The pressure in the observation tank p; is measured and controlled by a pressure
regulator and a flow controller. Since this type of control requires a certain controlled
volume, an extra volume of 500 ml is placed between the measurement vessel and
the flow controller to enable a smooth regulation of the pressure.

5.3.2 Comparison between experimental results and simulations

When the pressure in the observation tank is lowered thus bringing the liquid to a su-
persaturation condition, the bubble nucleates attached to the wall, pinched to the edge
of the pit. In the initial phase the bubble cannot be regarded as spherical, therefore
the model hereby developed cannot give reliable predictions. However, after ~100 s,
the bubble becomes almost spherical and it remains such until the moment it starts
to deform just some seconds before detachment (see Fig. 5.4.f). We found that, with
the exception of the initial stage, the present model is able to give a good prediction
of the bubble growth, provided that a proper geometrical correction is introduced to
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valve

p regulator 1 valve
/ ! valve p regulator 2

High p Mixing tank Observation tank  Control volume
lab gas line with artificial
nucleation sites

Figure 5.3: Experimental setup

Figure 5.4: Snapshots of the nucleating bubble at different instants, from the moment
that p; is dropped to 6 bar; T., = 20°C, coo = 1.08 X gy
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Figure 5.5: Sketch of the nucleated bubble and its boundary layer d(¢). o is the
angle denoting the area excluded from the diffusive process because of the presence
of the pit, B is the angle denoting the excluded area because of the boundary layer
disruption at the wall.

keep into account the presence of the wall.

We verified that the effect of the area excluded from the diffusive process due to
the presence of the pit (i.e. the area subtending the angle ¢ in Fig. 5.5) is not relevant
in the considered time frame, as the pit has a small radius compared to the bubble,
which can therefore be regarded as a perfect sphere tangent to the nucleation plane.
However, the effect of the disruption of the boundary layer due to the presence of the
wall turned out to be of primary importance in explaining the dynamics of the bubble.
We introduced a geometrical correction in order to exclude the area subtending the
angle B in Fig. 5.5, thus transforming the mass conservation law (6.15) into

. dc
G = (47rR2—A€xcl)D8— , (5.37)
r'lg

where A,y = 21R? <1 — cos%) is the excluded area due to the boundary layer dis-

ruption. The angle B(7) has been calculated with basic geometric considerations from
a linear estimate of the thickness of the boundary layer d(t):

; (5.38)
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in which % | is the gradient of the concentration at the bubble interface for a spher-
ical bubble in an infinite medium. This correction reflects the fact that introducing a
wall forces the gradient of the concentration to vanish. If the wall is introduced far
from the bubble, where the concentration field is almost flat as compared to the radial
coordinate r, its effect will be negligible. On the contrary, if it is introduced next to
the bubble wall, where % is maximal, its effect will be important. Strictly speaking,
only the mass of gas contained inside the volume V; in Fig. 5.5 should be excluded
from the mass flux entering the bubble, while the contribution of V, and V3 should be
considered. However, we assumed for simplicity that the effect of excluding V, and
V3 was negligible.

In Fig. 5.6, we track the time evolution of a CO, bubble created by lowering
the pressure in the observation tank from p; = 7 bar to p, = 6 bar, corresponding to
a supersaturation degree of 1.08, and we compare it with numerical results. In the
simulations we took as initial radius Ry = 130 wm, and as initial concentration field

co(nt) =ceo— (cs—cm)exp<—r_R0> . (5.39)

Here dj is the thickness of the boundary layer when the simulation starts, estimated as
do = /D1y, with 1y the instant when the bubble has dimension Ry in the experiment.
This estimate comes from the solution of the standard diffusion equation [9]. With the
geometrical correction, we found a satisfactory agreement between experimental and
numerical results, that could not be retrieved without. We also managed to reproduce
the non-square-root-like behavior emerging from the experiments and differing from
the one expected after the short initial surface tension and inertia dominated phases,
for a bubble growing by pure diffusion inside an infinite medium [10] (see Fig. 5.7).
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Figure 5.6: R(t) curves from experiments (red) and simulations, both with (blue) and
without (light blue) geometric correction. Parameters: T.. = 20°C, ¢o = 1.08 X g4,
to =120 s, Ry = 130 um.
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Figure 5.7: R2(t) curves from experiments (red) and simulations, both with (blue) and
without (light blue) geometric correction. Parameters: 7., = 20°C, co = 1.08 X gy,
t0 =120s, Rgp = 130 um. The black line represents the slope of the square root growth
of a bubble growing purely by mass diffusion inside an infinite medium.
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5.3.3 Conclusions

In view of a future extension of the PDE model presented in Chap. 2, in the present
chapter we developed a model for a cavitation bubble growing by mass diffusion,
including both the gas concentration field inside the liquid and the temperature field
inside the bubble. We validated it by comparing it both with the analytical solution in
a test case and with the experimental results regarding the time evolution of a bubble
growing purely by mass diffusion, attached to a pit. We introduced a geometric cor-
rection to keep into account the disruption of the boundary layer due to the presence
of the wall. Though the very first phase of the bubble growth cannot be reproduced by
the model, due to the asymmetry and lack of sphericity of the observed phenomenon,
this correction allows to predict the evolution of the bubble with a high accuracy, as
the spherical symmetry of the bubble is regained. In particular, it allows to reproduce
the non-square-root-like behavior observed in the experiments. This result is partic-
ularly interesting because it differs from classical square-root behavior of a bubble
growing purely by mass diffusion inside an infinite medium [10].
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The role of gas in ultrasonically driven vapor
bubble growth *

In the present work we study both experimentally and theoretically the dynamics
of an ultrasound driven vapor bubble of perfluoropentane (PFP) inside a droplet of
the same liquid, immersed in a water medium superheated respect to the PFP boiling
point. We determine the temporal evolution of the bubble radius with ultra-high speed
imaging at 20 million frames per second. In addition we model the vapor-gas bubble
dynamics, based on a Rayleigh-Plesset-type equation, including thermal and gas
diffusion inside the liquid. We compare the numerical results with the experimental
data and find good agreement. We underline the fundamental role of gas diffusion in
order to prevent total recondensation of the bubble at collapse.

6.1 Introduction

Current chemotherapeutical cancer treatment has severe side effects caused by the
adverse outcome of the drugs on healthy tissue. Therefore it is desirable to create

*Submitted to Phys. Med. Biol. as: [Oleksandr Shpak*, Laura Stricker*, Michel Versluis and Detlef
Lohse, The role of gas in ultrasonically driven vapor bubble growth. *These authors contributed equally
to the present work].

"The experimental data present in this chapter are entirely due to Oleksandr Shpak.
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drug delivery agents, which will release the drug locallly at the tumor site. Recent
studies have shown that liquid emulsion phase-change droplets composed of perflu-
orocarbons (PFC) such as perfluoropentane (PFP) have the potential to be a highly
efficient system for local drug delivery [1, 2]. PFP liquid has a boiling temperature
of 29°C. However, when stabilized the submicron- and micron-sized PFP droplets
do not spontaneously vaporize when injected in vivo at 37°C temperature [3, 4]. A
phase transition can be triggered by application of an acoustic pusle of sufficiently
high pressure [3, 5]. An explosive evaporation takes place and the drug is released
from the liquid core [6]. The advantage of the so-called acoustic droplet vaporiza-
tion (ADV) technique are its non-invasive and inexpensive character. Moreover, the
resulting bubbles become acoustically active ultrasound contrast agents, which are
detectable for at least one microsecond after nucleation [7]. Although the success
of this approach for localized drug delivery has been demonstrated [1], the physical
mechanisms underlying the ADV process have not been well described until now [8].

In this article we use ultra-high speed optical imaging to study experimentally
the ultrasound driven vapor bubble growth in the superheated liquid at nanoseconds
timescale. We capture the vaporization dynamics of a single emulsion system: PFP
droplets of a radius of 5 ym immersed in water. This system is simpler to model and
to track experimentally with respect to multiple phase emulsions used for localized
drug delivery [6, 9]. Some theoretical work has already been done on the mod-
elling of acoustic droplet vaporization at microseconds time scale, in the frame of
gas embolotherapy, a promising cancer treatment involving tumor occlusion with gas
microbubbles selectively formed from the liquid droplets [10]. Here we focus on the
nanoseconds time scale in order to capture the complex interaction of the ultrasound
with the vapor bubble. We develop a PDE model based on a Rayleigh-Plesset-type
equation, including thermal and gas diffusion inside the PFP liquid. We compare
the experimental data with the numerical results, finding a good agreement. Such a
model can therefore provide a valuable instrument for practical purposes, where one
wants to control the size of resulting bubbles as a function of time, for example when
they are used as ultrasound contrast agents [7]. We underline the fundamental role
of gas diffusion, in order to prevent total recondensation of the bubble at collapse,
provided that the periodic ultrasound driving is present. Recondensation of a vapor
bubble was thought as a possibility to induce reiterated phase transition of the same
droplet. For applications such as sonoporation and tumor imaging this possibility
may be of a crucial importance in order to avoid repeated injections of ADV agents.

Mathematical models for spherically symmetric vapor-gas bubbles have already
been formulated in Refs. [11-17], and their small oscillations have been analyti-
cally investigated in detail in Refs. [12, 17]. In the present work we will show that
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our approach has two great advantages with respect to the earlier models. First, it
is simpler, as it does not include diffusion of the gas inside the vapor, though still
able to capture the relevant experimental features. And secondly, it does not present
fitting parameters such as the accommodation coefficient for the description of the
evaporative process [11, 12].

6.2 Materials and Experimental Methods

The PFP droplet emulsion was prepared with bovine serum albumin using the same
method adopted in Refs.[18, 19]. The resulting highly diluted suspension of droplets
was injected into an OptiCell (Thermo Fisher Scientific, Waltham, MA, USA) in or-
der to observe the droplets individually. The OptiCell was submerged in a 1 liter
temperature-controlled water tank. A schematic of the experimental setup is shown
in Figure 6.1. Microdroplets were phase-transitioned with a focused 1.5-inch diam-
eter single-element transducer (A381S; Olympus Panametrics, Antwerpen, Belgium,
3.5 MHz center frequency, NA 1.0).

The acoustic driving pulse was generated by an arbitrary waveform generator
(Tabor 8026; Tabor Electronics, Tel Hanan, Israel) amplified by a RF-amplifier (ENI
350L, Electronic Navigation Industries, Inc., Rochester, NY, USA). Droplet sam-
ples were vaporized with a single ultrasound pulse, consisting of a burst of 6 cy-
cles and a driving pressure P, of 4.5 MPa. The pressure value was calibrated in the
same setup at the position of the droplets using a 0.2 mm PVDF probe hydrophone
(DC27/000658, Precision Acoustics Ltd., Dorchester, UK). An Olympus microscope
(Olympus; Zoeterwoude, The Netherlands) with a 40x water immersed objective (NA
= 0.7) was focused on an OptiCell providing a spatial resolution of 0.269 um per
pixel. The radial response of the insonified droplets was recorded with an ultra-fast
recording camera, the Brandaris 128 (Chin et al. 2003). The camera was set to record
6 movies of 128 frames in a single run at a frame rate up to 20 million frames per
second (fps), thus providing an interframe time as low as 50 nanoseconds. The first
recording was always done without ultrasound to estimate the noise level of the sys-
tem. The region of interest was illuminated with a 65 mJ Xenon flash pulse (30 us
duration) through the light guide (SCHOTT AG, Mainz, Germany) from below. From
the movies, the radii R(¢) of the resulting droplets as a function of time were measured
using custom-designed image analysis software based on a minimum cost function.
The droplet radius was calculated as the mean distance from the center of mass to the
edge of the droplet in a radial coordinate system averaged over the full 27 angle. The
vapor bubble dynamics model used here (see Sect. 3) assumes spherical symmetry of
the problem. However, due to the homogeneous bubble nucleation nature of ADV,
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Figure 6.1: Schematic view of the experimental setup. An OptiCell polystyrene con-
tainer with the microdroplet suspension was positioned inside a water tank kept to
a constant temperature 7., superheated with respect to the PFP boiling point. A
focused transducer sent the US-pulses from a side with an inclination of 45° with
respect to the plane of the Opticell. The samples were imaged from the top with an
upright microscope coupled to the Brandaris 128 high-speed camera and irradiated
from below with a Xenon flash light.

the vapor nucleus appears not necessarily in the center of the droplet. In order to
be able to compare the numerical results with experimental data, we chose a case in
which the nucleation occured well centered within the droplet.

6.3 Model

In the model we consider a spherical bubble of PFP inside an infinite medium of
liquid PFP, neglecting the surrounding water. We consider both the vapor and the gas
inside the bubble and we model their dynamics independently, i.e. we neglect the
diffusion of gas inside the vapor in the bubble. Both the gas and the vapor inside the
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Figure 6.2: A set of consecutive images showing acoustic droplet vaporization at
15°C superheat, taken at a frame rate of 18.81 Mfps. Driving parameters: frequency
f=3.5MHz, pressure Pa = 4.5 MPa. The initial radius of the droplet is Ry =5.38 pm.
The vapor bubble inside the droplet undergoes vaporization/(re-)condensation cycles
with the frequency of the applied ultrasound.

bubble are treated as perfect gases in saturated conditions. For a complete description
of the vapor dynamics and the evolution of the thermal field, we refer the reader to
Refs.[20, 21] and Ref. [22] respectively. We assume a spatially uniform pressure
inside the bubble, low Mach number regimes, spherical symmetry and shape stability.
The gas considered in the simulations is air with standard composition.

The radial dynamics of the bubble is described by a Rayleigh-Plesset-type equa-
tion with the formulation used in Ref. [22]:

R .3 R\ . 1 R Rd
1—— |JRR+Z(1—— R =— 14+ —+—— — 6.1
( CL) +2< 3CL) PL( +CL+CLdf>[pB pals ©D
in which R is the bubble radius, p; is the density of the liquid, ¢y is the speed of
sound and the dot is used to indicate time derivatives. The ambient pressure in the

liquid, p4, is calculated as
PA = Pe — P cos ot , (6.2)
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with P, the acoustic driving pressure, f = @/27 the driving frequency and p. the
static pressure. Such a phase of the driving pressure has been taken because the
bubble nucleation is most likely to occur at the negative pressure peak, when the
stretching of the liquid is maximal [19]. The pressure at the bubble surface on the
liquid side, pp, is derived from the normal stress balance at the bubble wall

R 20
= 4up— + — 6.3
P=pstiliy+ o, (6.3)
where i, is the dynamic viscosity of the liquid and o is the surface tension. The total
pressure inside the bubble, p, can be expressed as the sum of the partial pressures of
gas pg and vapor py:

P=pv+pc. (6.4)
The Clausius-Clapeyron relation holds [21]:

dpv _ Lpv

= 6.5
ATy Ty (6.5)

where L is the latent heat and py the density of the vapor. An explicit expression for
pv can be found by integrating Eq. (6.5) with the further use of the perfect gas law
of the vapor

L
=P, — ) 6.6
pv = Pyexp ( Rst) (6.6)

Here Py = pvoexp(L/RTy) is a constant and Ry is the universal gas constant divided
by the molecular mass of the vapor. The pressure of the gas p¢ is related to the
concentration of the gas in the liquid at the bubble wall, c|g, by Henry’s law:

PG = kuclr (6.7)

where kg is the Henry’s constant, derived from air solubility data inside PFP.

We assume a uniform temperature field inside the bubble. This is a common
assumption for vapor bubbles and its validity has been verified in Ref. [20]. In
order to describe the evolution of the temperature field in the liquid 7'(r,7) we use the
standard convection-diffusion equation [22]:

oT R’ROT

| =k VT 6.8
pLCp,L<at+ o (9r) VT, (6.8)
where r is the radial coordinate measured from the bubble center, while ¢, ; and kz,
are the specific heat and thermal conductivity of the liquid. Far from the bubble, the
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liquid temperature is assumed to remain undisturbed at the initial value 7., and the
following boundary condition is adopted:

ox
oar

At the bubble wall, the temperature is continuous. Therefore:

00,t) =0. (6.9)

T(R(t),t) =Ts(t), (6.10)

i.e. Ts - the temperature at the surface - equals the temperature inside the bubble. The
energy balance at the bubble wall can be written as [20]:

d dTs oT
—— = 4Rk 11
L (pvV)+pvVes—= ol (6.11)

with ¢y = cpy — L/Ts the specific heat of the saturated vapor, and V the volume of
the bubble. The first term in Eq. (6.11) is the heat employed to evaporate the liquid,
the second is the change of vapor enthalpy in time due to temperature changes and
the third one is the heat transferred by conduction from the liquid to the bubble. The
change of gas enthalpy in time due to temperature changes has been neglected as we
assumed pg << py. This assumption turned out to be justified because we found
pc/pv ~ 1072, as will be shown later. We also neglected the heat flux by diffusion
inside the bubble because of the assumption of uniform temperature. By making use
of vapor mass conservation, the Clausius Clapeyron eq. and the perfect gas law for
the vapor, Eq. (6.11) can be rewritten as

L* 2L\dTy 3 ( JT
cp+ v k—
RT; dt pVR ar g
from which an explicit expression for ds can be extracted. For a detailed derivation
of Eq. (6.12) we refer the reader to Ref. [21].

Similarly to the temperature, the concentration of the gas in the liquid ¢(r,7) is
described by the standard convection-diffusion equation:

- pVLR> (6.12)

dc  R’Roc
ar  r* dr
Here D¢ is the mass diffusivity of the gas inside the liquid, calculated by means of
the Stokes-Einstein formula [23]: Dg = kgT /(67 rg), where kg is the Boltzmann’s

constant and rg is the gas molecular radius calculated as half of the collisional diam-
eter, following Ref. [24]. Far from the bubble, the gas concentration is assumed to

= DgVZe. (6.13)
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remain undisturbed at the initial value c.. = 0.68 kg/m?, equal to the solubility of air
inside PFP, and obviously, as a further boundary condition:

dc

Z(e0,1) =0. 6.14
o (1) (6.14)
Mass conservation of the gas implies:
d dc
—(pGV) = 4nR*DG— 6.15
7 (pcV) FHR (6.15)

where pg is the gas density inside the bubble, related to the gas pressure by perfect
gas law
PG — Rory (6.16)
PG
with R the universal gas constant divided by the molecular weight of the gas. All
the properties of PFP were taken from Refs.[25, 26].
For the solution of both the energy equation Eq. (6.8) and the gas diffusion equa-
tion Eq. (6.13) we used the method presented in Ref. [22], i.e. a pseudo-spectral
collocation method. The reader is referred to that reference for details. We adopted

the coordinate transformation

1 R(r)—1
4 (;) ’

(6.17)

in order to map the semi-infinite range R(7) < r < oo into the finite range 1 > & > 0.
In (6.17), the constant [ is related to the thermal diffusion length in the liquid, as
thermal diffusion is the dominating process in the observed phenomenon and it has

been taken as
| — gi\/DL/w

= R
where D;, = Ay /c p.LPL 18 the liquid thermal diffusivity and £ is a constant number. We
adopted a value of ¢ = 20, in agreement with results of Ref. [27]. We reformulated
the energy equation and the gas diffusion equation by substituting the new variable &
inside the Eqgs. (6.8) and (6.13), and we expanded the liquid temperature and the gas
concentration fields in truncated Chebyshev series:

(6.18)

N
T(;’é) ~ Y an(t)Tu(E), (6.19)
° k=0
N
ot.6) Y b ()T (€), (6.20)
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in which T»; (&) are the even Chebyshev polynomials. The coupled equations for the
various ai(t) and by(t) arising upon substitution of Egs.(6.19) and (6.20) into Egs.
(6.8) and (6.13) were solved by collocation. Convergence was reached by using 45
terms in the Chebyshev expansions with 45 Gauss-Lobatto collocation points. In
the limiting cases of the absence of gas diffusion, we have verified that the code
developed for this work gave the same results as those used in Refs. [20] and in
Chap. 5 respectively, which had been both validated against analytical solutions. In
the case of pure gas diffusion and no driving an additional validation was performed
against experimental data in Chap. 5.

6.4 Results

In experiments we measured the external radius of the droplet as a function of time.
The statistical error of the measurement of the droplet radii was 150 nm. Assuming
incompressibility for liquid PFP, we extracted the radius R(r) of the bubble, using
mass conservation: pr(Vy(t) =V (t))+pvV(t) = prVa o, where V,(¢) and V () are the
volume of the droplet and the volume of the bubble, respectively, Vo is the initial
volume of the droplet, before the bubble nucleates, and p; is the density of liquid
PFP. Therefore

PL— Pv

with R, the initial radius of the droplet before the bubble nucleates and R,(t) the
measured radius of the droplet. In Fig. 6.3 we compare the time evolution of the
bubble radius extracted from the experimental data with simulations. We chose a case
with one well isolated bubble remaining almost spherical and far from the droplet
wall (see Fig. 6.2).

A 4.5 MPa pressure driving pulse with a frequency of 3.5 MHz for the duration
of six cycles was applied. The measurements of the driving pressure amplitude per-
formed with the hydrophone were accurate within a relative error of up to 200 kPa,
based on the standard deviation of the acoustic pressure amplitudes required to acti-
vate droplets of the same size [28]. We took as initial radius Ry for the simulations
the lowest value inferred from experiments, which is 1 um. The water surrounding
the droplet was kept at the constant temperature 7., = 44°C, i.e. with a superheat of
15°C with respect to the boiling point of PFP 7}, = 29°C. The error of the temper-
ature measurements was estimated to be 1°C, due to the circulation of water above
the heating element. As the nucleation of the vapor bubble is an abrupt phenomenon,
ideally we should consider as initial condition a constant temperature field equal to
the water temperature, in the whole liquid PFP and the boiling temperature of PFP at

R(t) = \/ —PL_ (R -R3), 6.21)
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the bubble wall. For numerical reasons, we smeared out this step condition and we
took instead an initial temperature field 7y(r) as

To(r) = Too — (Too — Tp,) €xp (— ;:1;(:)) ; (6.22)

where (0 — Rp) describes the thickness of the thermal boundary layer. We tried dif-
ferent values for § , Ry < 0 < 2R and we found that, as long as the initial boundary
layer is restrained to one radius distance from the bubble wall, its effective thickness
does not influence significantly the final result.

Similarly, for the gas concentration inside the liquid, we assumed an initial dis-
tribution c((r), defined as

c0(r) = Coo — (Coo — Cp) EXP (— g,__ljé)()) (6.23)
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Figure 6.3: Radius-time curve R(¢) of a PFP bubble from experiments (dash-dot)
and simulations (solid) at 15°C superheating. Driving parameters: frequency f =
3.5 MHz, pressure Pa = 4.5 MPa. After 2 us the driving was turned off. The ini-
tial radius for simulations Ry = 1um has been taken from the first value detected in
experiments during the non-instantaneous nucleation phase.
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Figure 6.4: Radius time curve R(¢) from simulations for a 1um bubble in the same
conditions of Fig.6.3 without (dash) and with driving, both with (dash-dot) and with-
out (solid) gas diffusion. When the bubble is forced and without gas diffusion the
bubble undergoes complete condensation after the first collapse. When the bubble is
unforced, gas diffusion has no effect on the bubble dynamics.

where (6’ — Ry ) describes the thickness of the mass diffusive boundary layer. Here
Coo = 0.6846 kg/m? is the concentration of air inside PFP, given by the solubility of
air inside PFP at 1 atm, and ¢, is the initial concentration of gas at the bubble wall,
set by Henry’s law. We assumed the initial amount of gas trapped inside the bubble
to be zero, therefore ¢, = 0 kg/m>. The same considerations reported for the initial
temperature field apply also to the initial gas concentration field. At initial stages
the discrepancies between experimental data and simulations may be attributed to
the shape instabilities of the vapor bubble after the first rebounce. At later stages
the vapor bubble approaches the boundary of a PFP droplet and the assumption of
infinite PFP liquid is no longer valid.

The role of gas diffusion inside the bubble turns out to be of primary importance,
provided acoustic forcing is present. Although the rate of gas to vapor mass mg/my
is of order 1072, gas diffusion is necessary to avoid complete condensation of the
bubble after the first collapse of the vapor bubble. Fig. 6.4 shows that, without in-
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Figure 6.5: Mass of gas (solid) and vapor (dash-dot) inside a PFP bubble versus time,
from simulations under the same conditions as in Fig. 6.3. Note the two order of
difference between the vertical scales.

cluding gas diffusion, the bubble does not survive the first driving cycle. Simulations
with different values of c¢.., down to 10% of the solubility of air in PFP, quantitavely
showed the same behavior. Below 10%, the gas pressure is not high enough to prevent
recondensation of the bubble.

The radial dynamics of the vapor bubble is governed by thermal diffusion. Re-
moving the acoustic forcing (dashed line), on the considered time scale, we retrieve
the same growth rate found with the acoustic forcing. In this limiting case, including
gas diffusion did not have any significant effect on the bubble growth. With no ultra-
sound affecting the system, from the classical Plesset-Zwick theory [29], we expect
a first phase with low growth rate due to surface tension (before 0.2 us in Fig.6.4),
followed by a linear growth phase dominated by inertia and eventually a square-
root growth dominated by diffusion. Considering the limiting case of purely iner-
tial growth, with a uniform liquid temperature field equal to 7., from the Rayleigh-
Plesset-type equation, assuming R = 0, it is possible to estimate the radial inertial
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expansion as: Rj, ~ t\/(2/3)Ap/pr, where Ap = pe. — pv sur(T) With py g im-
posed by the Clausius-Clapeyron theorem as the pressure of the saturated vapor at
T... Considering the other limiting case of purely thermal diffusive growth with a
uniform pressure field in the liquid equal to p., it is possible to estimate from the
energy equation the radial thermal expansion as follows: Ry, ~ k; AT /(Lpy+/Dr)\/t
where AT = T.o — Ty 54t (Poo) With Ty 4 (poo) again imposed by the Clausius-Clapeyron
theorem as the temperature of the saturated vapor at p., [29]. At a specific instant 7,
the smallest value of either R;, or R;, is the one that governs the dynamics. At the
specific time which we are considering (f = 4 us), R, and R;, are of the same order
of magnitude, but with R;;, < R;,,, we are in a transitional regime between linear and
square root-like radial growth.

In Fig. 6.5 we report the mass of gas (solid line) and the mass of vapor (dash-
dotted line) inside the bubble during the bubble growth. The ratio between the two
mg/my is of order 1072, thus justifying the assumptions of the model. The difference
between the thermal diffusivity and the mass diffusivity constants, as well as the
difference between the temperature gradient and the concentration gradient driving
the two diffusive phenomena, leads to different time scales and therefore to different
shapes of the curves mg(t) and my (7).
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Figure 6.6: Radius-time curve R(r) from simulations for a PFP bubble for different
initial radii Ry, at 15°C superheat, driven at frequency f = 3.5 MHz, pressure P, =
4.5 MPa.
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Figure 6.7: Radius-time curve R(7) from simulations for a 1um PFP bubble driven at
different frequencies with pressure P, = 4.5 MPa, at 15°C superheat.

In order to verify the robustness of predictions with respect to the initial radius
chosen, we performed several calculations, varying Ry (see Fig. 6.6). A change of
this parameter by 50% in either way relative to the adopted value of 1um, inferred
from the first available data point, resulted only into a small change of the growth rate
of the bubble: after the first collapse it is between +8% and —20%. The amplitude
of the bubble oscillations was left unperturbed. Therefore we can conclude that the
simulations are robust with respect to the choice of the initial radius.

We also explored the effects of the driving frequency on the bubble dynamics
(see Fig. 6.7). At the relevant time scales, lower frequencies corresponded both to
larger oscillations and larger average values of the radius. Larger oscillations at low
frequencies are due to the fact that the bubble has more time to expand. Enhancement
of rectified heat transfer [30-32] due to this large oscillation amplitude magnification
can explain the faster growth rates at the initial stages (after 3 us) at lower frequen-
cies. However, the associated growth rates reverse their frequency dependence at
later stages (after three microseconds).
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6.5 Summary and conclusions

In the presented work we follow the growth dynamics of a PFP vapor bubble nucle-
ated and driven with ultrasound, inside a PFP droplet, contained in a water medium
superheated with respect to the PFP boiling point. The model we introduced here,
describing the evolution of a ultrasound driven vapor bubble inside a superheated in-
finite medium of the same substance, succeeded to reproduce the dynamics of such
a bubble within a 10% error. It is important to note that our model does not contain
any free fitting parameters. It included both thermal diffusion and mass diffusion
of gas (air) inside the liquid. Simulations underlined the fundamental role of gas
diffusion during acoustic forcing. Though the bubble dynamics is entirely governed
by evaporation and condensation processes, as the rate between gas and vapor mass
is mg/my ~ 1072, a minimum amount of gas (~10% of the air solubility in PFP) is
necessary in order to allow the bubble to survive the first collapse. When no driving is
present, including or neglecting gas diffusion has no influence on the bubble growth.
The analysis of this limiting case showed that, at time scales considered, we are in a
transition region, in which thermal diffusion becomes more relevant than inertia.

Given the difficulties of experimentally monitoring the initial nucleation phase
of the vapor bubble, we examined the role of the initial nucleation radius on the
bubble dynamics by means of simulations. Larger initial nucleation radii lead to
larger growth rates, although the oscillation amplitude is left unperturbed. We found
that a change of £50% in Ry induces a change of the bubble growth rate after the first
collapse, within 30% of its original value. We also examined the effect of the driving
frequency, and found that lower frequencies lead to larger oscillation amplitudes and
larger bubble sizes at the relevant time scales.
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Oscillations of a gas filled cavity

In some kinds of last generation efficient sonochemical reactors, the creation of bub-
bles is enhanced by means of ultrasonic activation of artificial silicon-etched micro-
pits. In the present chapter, we study the oscillations of a gas pocket entrapped inside
a cylindrical micropit, by means of a combined level set and projection method ap-
proach. We compare our results with the analytical ones for small oscillations in
the limiting cases of Stokes and potential flow, finding good agreement. We extend
the study to the intermediate regime where both viscosity and advection are impor-
tant and where no analytical study has been done until now. We examine both the
small and large amplitude free oscillations, as well as the effects of the presence of a
rigid wall. We also consider the forced oscillations, showing that, when the flat inter-
face is taken as equilibrium condition, even complex initial perturbations relax in few
acoustic cycles when the air pocket is forced at its main resonant frequency. This sug-
gests that, despite the abruptness of the response, the bubble formation mechanism is
something other than the main resonance.

7.1 Introduction
Gas pockets of the order of some microns can be stabilized against diffusion by en-

closure within small rigid structured and crevices, such as pits and pores [1]. The
ultrasonic activation of these entrapped pockets is associated to several phenomena,
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such as bubble nucleation [2, 3], small-scale motion (microstreaming) [4, 5], collec-
tion of suspend particles at the active crevices [4, 6] and mixing [7]. In biological
systems, these phenomena can result into severe damage. In plant leaves [8] and
insects [9] cell disruption and death have been observed as a consequence of the ul-
trasonic activation of entrapped gas pockets; in humans, the rupture of platelets [10]
and erythrocytes [11] and the accumulation of red cells around acoustically activated
holes [4] have been reported. These phenomena can also be exploited for practi-
cal applications. The microstreaming generated by the pulsations of the entrapped
bubble has been used to study the consequences of shear stress upon bacteria and
cells[12, 13], while the disruptive potential of pore-originated cavitation can facilitate
drug delivery [14] and gene transfection [15]. Moreover, controlled bubble growth
and collapse can be achieved through patterned membranes [16] and silicon etched
micropits [2, 3, 17]. In particular, this last technology found recent application in the
fabrication of efficient sonochemical reactors [18, 19].

Even if the technological applications are manifold, the dynamics of a single os-
cillating gas pocket is still a problem that needs to be investigated. Few experimental
works are available on the dynamics of ultrasonically driven entrapped bubbles, and
they mainly deal with patterned surfaces and multiple bubbles [16, 20-22]. Though
Rathgen et al. [21] measured the maximum deflection of the menisci during acoustic
oscillation, they could not resolve the full shape of the interface.

Some theoretical studies have been published, where the entrapped bubble dy-
namics was studied under restrictive assumptions. In Refs. [21, 23], the authors
calculated its resonance frequency within the assumption that the interface remained
parabolic. An analytic approach has been recently developed from Gelderblom et al.
[24], in the case of small amplitude oscillations, for the limiting cases of potential
and Stokes flow.

The objective of the present work is to understand the dynamic behavior of an
entrapped bubble inside a cylindrical crevice of the kind described in Chap. 3 and
Ref. [19], without any of these assumptions. To this aim, we adopt a numerical
approach that allows us to take into account both advection and viscosity. The method
is based on a level set approach, combined with a staggered grid projection method
[25, 26]. A vast literature is available for level set methods, including some books
[27, 28]. For a review, we refer the reader to Ref. [29]. These methods have proved
particularly efficient when singularities and contact lines are present [30-32]. After
validating the code by comparing the numerical results with the analytical ones in
the limiting cases of Stokes and potential flow for small amplitude oscillations, we
examine the intermediate regime where both advection and viscosity are present, and
the large amplitude free and forced oscillations. We also consider the effect of the
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Figure 7.1: Sketch and nomenclature for the micropit containing the entrapped bub-
ble.

presence of a solid boundary near the pit, which is a condition occurring in cleaning
devices [33, 34].

7.2 Model

We consider a cylindrical pit etched on a flat plate immersed inside a liquid and
filled with air (see Fig. 7.1). Several assumptions are made in the following. We
assume that the meniscus is pinned at the edge of the pit. The liquid is taken as
incompressible. The gas is regarded as ideal and we neglect both its viscosity and
inertia, because it has a lower density with respect to the liquid. Therefore the gas
pressure is considered spatially uniform. These are reasonable assumptions as the
Mach numbers are small (Ma << 1), i.e. the velocities are small compared to the
sound velocity. The temperature of the gas is also assumed to be spatially uniform
and it is kept constant in time. We assume that the system is axially symmetric and
we adopt cylindrical coordinates.

We study the evolution of the velocity field u(z, r,z) and the pressure field p(t,r,z)
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in the liquid, where ¢ is the time, r is the radial coordinate and z is the axial coordinate.
The motion of the liquid is described by the Navier-Stokes equations. In the case
of forced oscillations, an acoustic oscillating driving pressure is applied on the free
boundaries of the computational domain, ideally at r — co.

The equations expressing the conservation of mass and momentum are

V-u (7.1)
Jdu 1 H oo
EJFU.VH__EVPJFEV u, (7.2)

in which u and p are the viscosity and the density of the liquid, respectively.
At the interface, a balance of normal and tangential stresses holds. Since the gas
viscous stress is neglected, the liquid tangential stress is null:

t-D-n=0 (7.3)

where n and t are the unit normal and tangential vectors at the interface respectively,
and D = p(Vu+ VuT) is the stress tensor. The normal stresses balance can be ex-
pressed as

pcG=pp+okKk—n-D-n, (7.4)

where p¢ is the gas pressure, pp is the pressure at the interface on the liquid side, o is
the surface tension and « is the local curvature. Eq. (7.3) and (7.4) provide boundary
conditions at the interface for velocity and pressure.

The pressure of the gas follows the perfect gas law

p(;VK — poVOK (7~5)

in which V is the volume of the entrapped bubble, K = 1 as we consider an isothermal
process, po is the ambient pressure of the liquid and Vj is the geometric volume of
the pit.

The pressure of the liquid at infinity is given by

Do = po+ Pysin(or) (7.6)

in which P, is the driving amplitude and w = 27 f with f the driving frequency.

7.3 Numerical method

In order to track the position of the gas/liquid interface, we use a level set method
coupled to a projection method. The latter is used to determine the velocity and
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pressure fields in the liquid. We refer the reader to Refs. [27, 28] for an extensive
overview of the level set method and to Refs. [25, 26] for details on the numerical
treatment adopted in the present work. A summary is given in the following, with
particular care for the singularity encountered at the contact line, where the meniscus
is pinned to the edge of the pit. We consider a computational domain of dimensions
R x Z (see Fig. 7.1) with Ng x Nz cells and a pit with dimensions R, x Z, and
Ngpir X Nzpir cells. The method requires the introduction of a smooth function ®(x),
called the level set function, defined at the center of each computational cell. The
gas phase is identified by @ < 0, while the liquid phase is characterized by & > 0.
The set of points x where ® = 0 corresponds to the interface. In order to simplify
the equations resulting in the numerical treatment, ® is chosen with the particular
property of being a signed distance function, i.e. a function whose value at point x is
equal to the shortest distance between x and the interface

®(x) = S(P(x))min(|x —xr|), Vxrel. (7.7)

Here xr is a point on the interface and S(®) is the sign of the level set function,
defined as

1, if®>0
S(®)=<0, ifd=0. (7.8)
-1, ifd<0

For example, when the interface is a 2D circle of radius R centered at (xo,yo), the
level set function will be the cone ®(x,y) = \/(x —x9)? + (y — y0)? — R. In our case,
a graphic representation of the full level set function is not possible, as the interface
is 3D and ® is 4D. However, as we assume axial symmetry, 3D contours of the level
set can be shown, for a fixed meridian plane (see Fig. 7.2).

At any point of the interface, the unit normal vector n and the local (3D) curvature
K can be found through

Vo
== 7.9
n Vol (7.9)
Kk=-V-n (7.10)
The level set function is advected by means of the equation
P

in which, u is the velocity of the fluid at point x, either real (where ® > 0) or ex-
trapolated (where @ < 0). The extrapolation of the velocity field is a delicate issue
and we will address it later. After advecting the level set, a correction of @ becomes
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Figure 7.2: Example of 3D contour of a 4D level set line used to represent the menis-
cus (red), pinched at the pit edge (black).

necessary in order to enforce the signed-distance property. This manipulation, called
reinitialization, must not displace the interface and it can be performed in different
ways [35-37]. As a direct calculation of the zero level set [35] is computationally
expensive, in the present work we adopt the method of Ref. [36]. We solve the
equation

P

— +8(@%)(1—|VP|) =0

ot (7.12)

d(x,0) = @Y,

until steady state is reached. Here 7 is an artificial time and ®° is the level set function
calculated with (7.11). This procedure is based on the property that a signed distance
function ® has |[V®| = 1 at all points except those equidistant from two or more
points of the interface. This singularity region, where the gradient is not rigorously
defined, is usually called ’the skeleton’. In the present work we take care of reducing
its dimension by regularizing ® at the contact line, in order to avoid the development
of numerical instabilities. We extend & in the solid region in a smooth fashion, by
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means of the osculating paraboloid through the contact line. We enforce the zero level
set of such extension to have the same tangent plane and 3D curvature as the existing
interface at the point where the meniscus is pinned to the pit edge (see Fig. 7.2 and
Fig. 7.15). In the numerical treatment of Eq. (7.12), the sign function is substituted
by a smeared Heaviside function

1, ifd>e
H(®) =1+ 2 +5Lsin®2 if —e<d<e (7.13)
—1, ifd<e

to prevent numerical instabilities.
The level set advection equation (7.11) is integrated in time by means of an
Adam-Bashforth scheme
ol —pr 3 1
- = Z(u-V®)+ = (u- Vo))" ! 7.14
in which the superscript indicates the time instant. The spatial derivatives of & are
computed with a fifth order WENO scheme [38].
The reinitialization equation (7.12) is integrated in the pseudo-time 7 with the
third order Runge-Kutta scheme described in [39], consisting of a linear combination
of Euler integration steps:

o) = @" — ArLD",

3 1 1
d? — 4q)n+ 4(1) 4AtLCI) ) (7.15)
@Hh:%w+§¢®—§muﬂ%

with L&W = §(@%)[|VO®)| — 1]. Here the spatial derivatives of & are computed
using the “subcell fix” method described in Ref. [40], in order to prevent mass loss
and growth of oscillations [25]. With this method, spatial derivatives of & at point x
are computed with a fifth order WENO scheme, when x is far from the interface, and
with a third order modified ENO scheme when x is close to the interface. This proce-
dure is essential to guarantee the upwind nature of the scheme, in agreement with the
fact that the reinitialization equation is a hyperbolic equation whose characteristics
always propagate from the interface to the liquid [25].

The equations of momentum (7.2) and mass conservation (7.1) are solved by
means of a projection method [41]. We use a standard staggered grid for the pressure
and the velocity fields. The momentum equation (7.2) is integrated by means of
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Figure 7.3: Sketch of the boundary condition for the mixed boundary Laplace prob-
lem used as test case for the pressure field in Sec.7.4.

two separate steps, by the introduction of an intermediate velocity field u*. The first
intermediate step consists of a predictor step, where the advective and diffusive terms
are treated explicitly and u* is found with a first order Euler method:

u—u” 1
=—(u-Vu)"+—(V-D)". 7.16
m = —WVW'+ (VD) (7.16)
As u* is not divergence-free, a projection step is required, to find the real field u"*!:
n+l _ 4% \v/ n+1
v w__ Y (7.17)
At P

In order to calculate the pressure field p, we apply the divergence operator to both
sides of (7.17), imposing the desidered property that the final velocity field is divergence-
free: V-u"*! = 0 thus obtaining the Poisson equation

lvzan = 7V u

P A (7.18)
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This equation has to be solved subject to the boundary conditions: p = pr at the

liquid/gas interface, a—f ]r:O = 0 at the z-axis (left boundary) for symmetry reasons,
p

ez, ror, = 0 at the bottom, p = p.. at the top and right boundaries, for open flow

conditions or ‘;—5 = 0 for rigid wall conditions. In the integration of (7.16), the spatial

derivatives of u” are calculated by means of a fifth order ENO scheme. In order both
to impose the boundary conditions on the velocity field when solving (7.16) and to ad-
vect the interface in the proper way by means of (7.11) without generating numerical
instabilities, we extrapolate the liquid velocity field inside the gas. This step results
particularly delicate because the extrapolated field has to satisfy also the incompress-
ibility constraint in order to guarantee an accurate and mass-preserving displacement
of the interface [42]. In order to achieve this, we use a technique similar to the one
described in Ref. [25], adapting it to the specific case. Under the surface of the rigid
horizontal boundary at z = Z,, we introduce 3 rows of ghost cells through a mirror-
ing procedure in such a way that, when the fifth order ENO gradient is calculated,
the velocities satisfy both the no-slip condition and the incompressibility constraint.
The velocity is then extrapolated using the Lagrangian multipliers method described
in Ref. [25], both in the gas and in the solid substrate around the pit, within a band
of 6 cells from the liquid-gas interface and from the horizontal liquid-solid interface
respectively. We impose both the incompressibility constraint and the free-slip con-
dition at the gas-liquid interface in the Lagrangian function. Although, theoretically,
this should be enough to ensure the divergence-free constraint, near the contact line
the V -u can still be non-zero. Therefore, a further projection step in the extrapolated
velocity field is required, similar to the one adopted to ensure incompressibility in
the real velocity field [25]. The 3 rows of ghost cells, adjacent to the horizontal
solid-liquid interface at z = Z,, are excluded from this projection step.

7.4 Validation

In order to validate the liquid pressure field calculated from the Poisson equation
(7.18), we compared the numerical results with the analytical solution in a test case
with flat meniscus, velocity equals zero everywhere and vertical rigid wall coaxial to
the pit at the right boundary. The boundary conditions were imposed as in Fig. 7.3,
in order to match the boundary conditions used in the projection method for the pres-
sure, thus giving origin to a mixed boundary problem. The analytical solution of this
problem is derived in Appendix A. We found good agreement between the numeri-
cal and the analytical results (see Fig. 7.4). We also verified that convergence was
reached by increasing the number of cells of the computational domain (see Fig. 7.5).
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In order to validate the full dynamics, we considered the limiting cases of Stokes
flow and potential flow for small amplitude oscillations and we compared the numer-
ical results with the analytic solution calculated in Ref. [24]. To reproduce the Stokes
flow conditions, we set to zero the advective term inside (7.16) and we imposed a
no-slip condition both at the gas-interface and at the solid wall. For the potential
flow, in order to fulfill the zero-vorticity requirement, we set to zero the viscous term
in (7.16), we imposed the free slip condition at the solid wall and the zero-vorticity
constraint itself at the gas-liquid interface, in the Lagrangian function used to find
the extrapolated velocity field. We verified that, since the vorticity vanished at the
boundaries, no vorticity was present in the rest of the domain as well, as expected
[43]. Both for the Stokes and the potential flow, we gave an initial perturbation to the
gas-liquid interface, i.e. we ’pulled’ the meniscus and we let it oscillate freely. The

z/R,=0.996

z/R,=0.662

0.9
18
~—
o z/R,=0.329
0.8f
— simulat.
— analytic
0.7 z/R,=0.004 0.96 1 1.04
0 0.5 1.5 2

’
r/R
P

Figure 7.4: Comparison of the analytical (blue) and numerical (red) pressure field in
the test case of Sec.7.4, at fixed z. Parameters: R, = R/2 =Z, Ng = 240. The pit
here corresponds to the negative values of z.
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Figure 7.5: Comparison of the analytical (blue) and numerical non-dimensional gra-
dient of the pressure dp * /dr* at z/R, = 0.0125, in the test case of Sec.7.4, for
different number of cells (as indicated in the legend). The adimensional quantities
are defined as px = p/P., r+ =r/R,. Parameters: R, = R/2 = Z. The pit here
corresponds to the negative values of z.

initial perturbation had the shape of a paraboloid with the vertex on the z axis:

Z,—z
PITO#HO (7.19)
14

where zo = Z, + Az, such that Azg < Z,,. In Fig. 7.6.a and in Fig. 7.7 we show the
free oscillations of the central point of the meniscus for the Stokes and the potential
flows, respectively.

For Stokes flow, we derived the resonance frequency fy of the first mode from
the distance between two consecutive peaks on the ¢ axis, while for potential flow we
used Fourier analysis. For Stokes flow we also calculated the damping coefficient 8
of the first mode by fitting a decaying exponential through the peaks of the z(r = 0,¢)
curve. As the initial perturbation did not correspond exactly to the first mode, the con-
tribution of some other modes was also present in the initial oscillations. Therefore
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Figure 7.6: Position z of the center of the meniscus (top) and maximum oscillation
amplitude Az (bottom) in logarithmic scale as function of time, during free oscillation
cycles, in the limiting case of Stokes flow. Parameters: R, = Z, = 15 um, Np = Nz
=250, Ngpir = 48. The dash-dotted line in the top figure is the decaying exponential
fitting the oscillation maxima (circles), after the higher modes have decayed.
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we waited for the higher modes to be damped before starting both the calculation of
fo and the fit of the exponential e A’. In Fig. 7.6.b we show in a logarithmic scale the
maxima of the z(¢) curve for the Stokes flow. The slope of the straight line connecting
two consecutive points gives 3 for that part of the curve. At the beginning, when the
higher modes are still present (squares), the apparent damping coefficient is lower,
while after some oscillation cycles, when the higher modes are damped out (circles),
B converges to a higher value, corresponding to the first mode damping coefficient.
In Fig. 7.8 and in Fig. 7.9 we present a comparison between the analytical and the
numerical result, for different static pressures. For the resonance frequency we found
an agreement within the 5%, while for the damping coefficient we found an agree-
ment within the 10%. The numerical results suggest that convergence is fulfilled, at
increasing number of cells in the computational domain (see Fig. 7.10).
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Figure 7.7: Position z of the center of the meniscus as function of time, during free
oscillation cycles, in the limiting case of potential flow. Parameters: R, = Z, =
15 um, Nr =Nz = 250, NRpit =48.
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Figure 7.8: Main resonance frequency as function of the static pressure, in the lim-
iting cases of Stokes (blue) and potential flow (red), both numerical (solid) and ana-
lytic (dashed). The black line represents the intermediate regime with both advection
and viscosity, from simulations. Parameters: R, = Z, = 15 um, Ngpir = Nzpir = 48,
Ng = Nz =250.

7.5 Results

We numerically investigated the intermediate regime where both advection and vis-
cosity are present. In Fig. 7.8 and Fig. 7.9, we show the resonance frequency and the
damping coefficient for different values of the static pressure P.., in the case of small
initial perturbation of the interface and therefore small amplitude oscillations. The
resonance frequency always lies between the Stokes and the potential flow resonance
frequencies. The damping coefficient is lower when both advection and viscosity are
present with respect to the Stokes flow. From both the resonance frequency and the
damping coefficient we see that, for lower values of the static pressure, the behavior
of the pit is closer to the Stokes flow, while, for higher P.., it approaches the potential
flow behavior.

In order to study the large-amplitude free oscillations, we gave increasing ini-
tial deformations to the meniscus, with the shape of a paraboloid 7.19. Though the
resonance frequency did not change, the damping decreased when the amplitude of
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Figure 7.9: Main damping coefficient as function of the static pressure, in the limiting
case of Stokes flow without any wall (blue) - analytic (dashed) and from simulations
(solid) - and in the regime with both advection and viscosity, with (light blue) and
without (black) a wall as right boundary. Parameters: R, = Z, = 15 um, Ng = Nz =
250, Ngpir = 48.

the initial perturbation increased, as shown in Fig. 7.11, where we plot the damping
coefficient as a function of the initial displacement Azy of the center of the meniscus.

We also studied the effect of the presence of a rigid boundary both coaxial with
the pit (like in the case of a cylindrical container surrounding the pit) or horizontal
above it (at the top). This kind of situation arises, for example, when one wishes
to use a device such as the one described in Chap. 3 and in Ref. [19] for cleaning
purposes [33, 34]. The presence of a wall increases the damping (see Fig. 7.9) and
reduces the resonance frequency (see Fig. 7.12). This effect is a bit more pronounced
in the case of the cylindrical wall around the pit with respect to the case of the top
boundary wall. The physical phenomena contributing to the reduction of the res-
onance frequency can be qualitatively explained by considering an analogy with a
classical damped harmonic oscillator, undergoing free linear oscillations and its mo-
tion equation % -+ 2B + @?x = 0. Here x is the displacement, f3 is the analogous of
the damping coefficient that we are considering for the pit and @, = /k/m is the
natural frequency of the undamped system, with k the stiffness and m the mass. The
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Figure 7.10: Resonance frequency as a function of the number of cells, for the Stokes
flow. The analytical value equals 117 kPa. The numerical results suggest that con-
vergence is fulfilled. Parameters: R, = Z, = 15 um, Ng = Nz = 250, Ngp;; = 48.
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Figure 7.11: Damping coefficient as function of the amplitude of the initial
paraboloidal perturbation at the center, in the case with both viscosity and advec-
tion, without any wall at the boundaries. Parameters: R, = Z, = 15 um, Ng = Nz =
250, Ngpir = 48.
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eigenfrequency of the damped system is given by @y = @,4/ 1 — BQ, with B =B/,
y the analogous of the resonance frequency that we are considering for the pit and
), the undamped resonance frequency, roughly corresponding to the resonance fre-
quency in the potential flow. A reduction of @y can be due both to an increase of 8
and to a decrease of @,. In the case of a pit surrounded be a circular wall, the confine-
ment of the flow changes both the damping coefficient and the natural frequency of
the undamped system. In particular, 3 increases because the wall introduces a further
nonslip surface, while w, decreases, because the added mass rises, leaving unvaried
the stiffness, which is given by the surface tension and the elasticity of the gas inside
the pit. In order to understand the increase of the added mass due to the confinement,
we can think to a pulsating bubble. In the case of an unconfined bubble, the added
mass is my ~ 4/ 37R3, while in the limiting case where the bubble is introduced in-
side a tube with the same radius, the added mass is my ~ TR2L, with L the length of
the liquid column.

In other words, when the confinement increases, the propagation of the distur-
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Figure 7.12: Resonance frequency as function of the static pressure, in the case with
both viscosity and advection, with a wall as right (light blue) or top (red) boundary
and without any wall (black). Parameters: R, = Z, = 15 um, Ng = Nz = 250, Ng,i =
48.
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bance (and therefore the displaced liquid added mass) are less influenced by the dis-
tance respect to the origin of the disturbance itself. Therefore, ideally, if we apply a
disturbance to one of the ends of a tube, a flow will be generated that will exit the
tube at the other end, independently of the length of the tube itself, with the only
limitation given by the propagation speed of the disturbance c, in the real case.

In order to investigate the bubble formation mechanism in devices like the sono-
chemical reactor of Chap. 3 and Ref.[19], we studied the response of the meniscus
to a driving pressure. We forced the system through the application of a periodic
pressure at the free boundaries, with different frequencies, and we examined the cor-
responding displacement of the central point of the meniscus, along the z-axis. A
typical resonance curve is shown in Fig. 7.14. |Az| denotes the maximum oscilla-
tion amplitude, after the transient has ended, namely at the 20" cycle (see Fig. 7.13).
The maximum response of the meniscus was obtained for the main resonance fre-
quency, as expected. A second lower peak appeared in correspondence of the second
resonance frequency (Fig. 7.14).

Given this maximum response in correspondence to the main resonance, we im-
posed a large sinusoidal initial perturbation and we forced the system at fj, to see
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Figure 7.13: Position z of the center of the meniscus as function of time, during
forced oscillation cycles, in resonant conditions, when both advection and viscosity
are considered. Parameters: R, = Z, = 15 um, Ng = Nz = 250, Ngpi = 48, f =
123.5 kHz.
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Figure 7.14: Maximum displacement of the central point of the meniscus (at » = 0)
undergoing forced oscillations, as function of the driving frequency f, during the
20" cycle. Parameters: R, =27, =15 um, P, = 1 kPa, Ng = 250, Ngpir = 48, P
= 1 atm, free flow both at the right and at the top boundary. The main resonance
frequency, as calculated from the free oscillations, is fy = 123.5 kHz. A second
resonance frequency appears around 250 kHz.

if the initial disturbance was amplified, eventually leading to strong instabilities and
bubble formation. After a short initial transient of three cycles the initial perturbation
relaxed and the meniscus continued to oscillate with a shape close to the first mode
(see Fig. 7.15). Therefore we concluded that, in order to asses the bubble formation
mechanism, the model should be explored to a larger extent. The bubble formation
could be ascribed to a rectified diffusion-like mechanism through the change of the
shape of the equilibrium condition or to the excitation of higher modes. These hy-
pothesis will have to be tested in future works.
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Figure 7.15: Forced oscillation cycle of the meniscus in resonance conditions,
with sinusoidal large initial perturbation (red). Parameters: R, = Z, = 15 um,
f =123.5 kHz, P, = 6 kPa. The initial perturbation line shows also the parabola
used to overcome the numerical singularity at the triple point, which is omitted in the
other instants for clarity reasons. The black lines correspond to the interface position
atinstants t;, = t;+dt, withdt =0.1 T and T = 1 /f.

7.6 Summary

The aim of the present work was the studying of the dynamics of an entrapped bubble
inside a cylindrical micropit etched over a planar substrate, like those of the sono-
chemical reactor described in Chap. 3 and in Ref. [19]. We neglected mass and heat
diffusion and we imposing the no-slip condition at the contact line. We used a numer-
ical approach based on the level set method for the interface tracking, together with
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a projection method for the solution of the Navier-Stokes equations in the liquid. In
order to validate the code, we compared the main resonance frequency and damp-
ing coefficient from simulations with the analytical ones [24] in the limiting cases
of small amplitude oscillations in Stokes and potential flow. We found an agreement
within the 5% and the 10% for the resonance frequency and the damping coeffi-
cient, respectively. We examined the intermediate regime where both viscosity and
advection were present and we found that the resonance frequency lay in between
the two limiting cases, with a shift from Stokes-like to potential-like values, as the
static pressure increased. The damping coefficient was always lower with respect to
the one of the Stokes flow. From the study of the large amplitude free oscillations,
we found that the resonance frequency did not change when the initial perturbation
was increased, while the damping coefficient decreased. We examined the effect of
the presence of a wall, situation that could occur in cleaning devices such as those
of Refs. [33, 34]. The introduction of a rigid wall either around or above the pit,
caused a decrease of the resonance frequency and an increase of the damping coeffi-
cient. We examined the effects of forced oscillations upon the pit, finding resonance
curves in agreement with the values calculated from the free oscillations, as a higher
response amplitude was found in resonance conditions. Secondary resonance peaks
also appeared. Despite the large response of the gas pocket in resonant condition,
we verified that, even for large initial perturbations, the forced oscillations tended to
smoothen the surface instabilities, thus leading to a motion similar to the one of the
first oscillating mode. Therefore we could conclude that the mechanism of bubble
formation found in sonochemical reactors of the kind of Chap. 3 and Ref. [19] can-
not be ascribed to the excitation of the main resonance frequency, when the meniscus
has a flat equilibrium condition. Possible underlying mechanisms could be a rectified
diffusion-like mechanism, through the deformation of the equilibrium condition of
the interface that it induces, or the excitation of higher modes. Both these hypothesis
will have to be verified in future works.

7.7 Appendix A

In order to validate the pressure field from the solution of the Poisson equation (7.18)
we consider a test case with a flat meniscus, with zero-velocity and a rigid wall as
right boundary. We compare the numerical results with the analytical solution of the
mixed boundary problem for the Laplace’s equation in cylindrical geometry:

Vip=0, (7.20)
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subject to the boundary conditions (see Fig. 7.3)

ap ap

5, (n0)=="(nR) =0 (7.21)
p(rH) = pe (7.22)

p(z=0)=pr, 0<r<R, (7.23)
dp

oar| _ - '
22|, 0, R, <r<R (7.24)

Given the cylindrical geometry, we first look for the solution in terms of a Fourier
series, we substitute it inside (7.20) and through (7.21), we rewrite it in terms of the
Fourier—Bessel series [44]

- (1) T
pnz)=) Zi(2)dolj =), (7.25)
(:) = L2 (i)

(1)

where Jy is the first type Bessel function of order 0 and j, * are the zero’s of the first
type Bessel function of order 1, J;. Upon substitution inside (7.20), we get

2
d’Z; J'/(cl)
—Zr| =— | =0 7.26
d N k ( R ’ ( )

from which

'R
(7.27)
Therefore the problem reduces to finding the constant coefficients Ay, By, Cy and Dy.
From the boundary condition (7.22), performing the projection operation, we get

R
ZBk/ r]0<]k> )dr:pw/ rJo<j,§1);>dr, (7.28)
0

Here the standard orthogonality property of the Bessel functions cannot be used,
because in the argument of the Jy there are not the zero’s of Jy, ji, but there are

5 (1) .(1)
H-— H—
p(r.z) =Do+Coz+ ) [Ak sinhw + By cosh W] Jo <J-<1)r> .

the j,(cl), at the left hand side of (7.28). Therefore a preliminary manipulation is
requlred By making use of the properties of the Bessel functions [45] [¢ J2(Ar)rdr =

5 [J,’lz(ka) ( A2a2> Jz(la)} where A and a are constants, 7 is the order of the
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Bessel function, and the apostrophe denotes the derivative respect to r, and with the
further use of and J(’)(j,(cl)) =—J (j,El)) =0, we get

R
_ 2P ('t
Bk == 22(1)/ rJ()< k R)dr (729)
R (1) b

By making use of the property xJy(x) = xJ{ (x) +J; (x), the integral at the right hand
side of (7.29) can be rewritten as

R R
(nr R mraf.mr (nr
/OI‘JO(]k R>dT—J£I)Z -]k RJ1<Jk R) +J1<]k R>d}’

R
R d (nr (7.30)
- a5

Therefore, By = 0, from which Cy = (p. — Dy)/H. Upon substitution inside (7.27),
we find

- (1)
H— D
p(r,2) =Y Agsinh e H=3) (j,ﬁ”r) 4+ 2= 20, 1 Dy (731)
P R R H

In order to calculate the A; and Dy coefficients, we use the remaining boundary con-
dition at z = 0. Upon substitution of (7.23),(7.24) inside (7.31), the problem can be
reformulated in terms of the following dual series formulation

. .(1
GVH _
Y Agsinh Jol jr = | +Do = pr, 0<r<R, (7.32)
= R R
- J';(Cl)H r P —Do
Ay cosh N — - =0 R,<r<R 7.33
kg,l kcosh =5 O(Jk R)+ 7 , p<r< (7.33)

This problem cannot be directly solved by means of the classical projection operation,
because the orthogonality property of Jo( j,El)r/R) holds on the interval 0 < r <R,
while (7.32)(7.33) are valid only on a part of it. Therefore, we need to find an expres-
sion for one of the two boundary conditions, valid on the whole domain. We make
the hypothesis that ‘3—;’ ‘z:O has the shape

ap

dpl  _ q(r)
0z

= H(R,—r), 0<r<R (7.34)
z=0 Rl%—r2
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where H is the Heaviside function and

=Y @nTon1)(r/Rp), (7.35)

n=1

in which g, are constants to be determined and 75(,_1) are the even Chebyshev poly-
nomials, taken such to satisfy the symmetry requirement respect to the z axes. Upon
substitution of (7.34),(7.35) inside (7.33), we get

o (1) Z anTon-1)(r/Rp)
H oo_D —
Y Arcosh JO< 7 >+p 0 1= H(R,—r), (1.36)
- R R H >
k=1 Ry, —r

valid on 0 < r < R. By performing the projection operation and using orthogonality,
after some algebra we find

2H
Do = pee—= 35 Y nbn; (7.37)
n

NY guan (i), (7.38)

with

by = (7.39)

(7.40)

R
p(i)) =—— : (7.41)

R
Nox = / J2 ( j,ﬂ‘)r) rdr. (7.42)
bl O R
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After some further algebra
Ry sin[(2n—3)m /2]

b= D=3 (7.43)

1) (1)

(1 TR ji. 'R Jj. 'R
an(ji) =4”{Jn;< kZR”)J%n< ’<2R”>+ (7.44)

(1) (1)

Ji Rp Ji Ry

T >J§n< o ﬂ (7.45)

0y _ i) oo 9 H ]
p (i ):—Z[Rjk cosh === (e )} : (7.46)
(7.47)

Upon substitution of (7.38) and (7.37) inside (7.32), the following expression is
found:

(1)
b 2 b X p () i W,O (1 5) Eanan (1) = pr-
n k "

By inverting g and % and performing the projection operation f(f "() Tagm—r)(r/ 1(?1)4/8()1?3, —
r2)1/2dr, after some algebra we find
;qum,, = Cpm, (m=1,...,0), (7.49)
where
K = — ot bun + L )an()su (), (7.50)

Cm = (PF _poo)tma (751)
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in which

(7.52)

(7.53)

1)

m

(7.54)
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Figure 7.16: Analytical solution of the mixed boundary Laplace problem used as test

Z, pr = 0.7P.. The

R, =R/2

case for the pressure field in Sec.7.4. Parameters
pit here corresponds to the negative values of z.
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After some algebra

(1)
(1) 2 s H
r(ie’) = == tanh #— (7.55)
RV () R
T
tm = 55,"1, (7.56)
(1) (1)
T R R
Sm(]]EI)) = E‘Im—l < szp)Jl—m (]szp> . (7.57)

By truncating the infinite series of 7.35 to a finite number of terms N, chosen such to
match convergence criteria, the following algebraic system is retrieved

(K] {an} = {cn}, (7.58)

where [Kmn] is a NxN matrix and {g,} is the vector of the N unknowns, g,,. In order
to calculate the terms K,,,, we truncate the infinite series of (7.50) to a finite number
of terms M, chosen such to have convergence for the each K,,,,. We calculate the ¢,
by solving the system (7.58) and we substitute them inside (7.38) and (7.37) to get the
coefficients Ay, Dy which, upon substitution inside (7.31), eventually give the p(r,z).
For practical reasons, (7.31) is truncated to a finite number of terms, N;. We have
verified that convergence requirements are fulfilled for Ny =200, N =4, M = 10.
For numerical implementation, it is convenient to rewrite (7.31) in such a way

that it does not diverge for large j,({])

Ne (1)
Ji 2 r mH—z P — Do
p(rz) = ZEkexp<—kR>JO (Jk )R) [1 —exp(—ZJIE R )] + i z+ Dy,

k=1
(7.59)

in which

2 % qnan (.]]El))
= (7.60)

RG] I ren(-2i )]

In Fig. 7.16 we show a 3D view of the pressure field.
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Interacting bubble clouds and their
sonochemical production * T

In the present work we study the interaction between bubble clusters generated from
acoustically driven air pockets trapped upon a surface. In particular, we examine
the transition between the three different behaviors observed in the new generation
sonochemical reactors of Chap. 3, at increasing powers: clusters close to the very
pits out of which they had been created, clusters pointing toward each other and
merging clusters. The latter behavior is highly undesired for technological purposes
as it is associated to a reduction of the radical production and an enhancement of
the erosion of the reactor walls. We study the conditions required for the transition
to occur and its dependence on several parameters such as the distance of the pits.
We also show that the underlying mechanism, governed by the secondary Bjerknes
forces, is strongly influenced by the nonlinearity of the bubble oscillations but does
not depend on the number of nucleated bubbles. We show that the Bjerknes forces
dampen the bubble oscillations, thus reducing the radical production and that the
increased number of bubble at high power could be the key to understand the experi-
mental observation that, after a certain power threshold, any further increase of the
driving does not improve the sonochemical efficiency but can eventually reduce it.

*Submitted to J. Acoust. Soc. Am. as: [Laura Stricker, Benjamin Dollet, David Ferndndez-Rivas
and Detlef Lohse, Interacting bubble clouds and their sonochemical production ].
"The experimental data present in this chapter are entirely due to David Ferndndez-Rivas.
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168 CHAPTER 8. INTERACTING BUBBLE CLOUDS
8.1 Introduction

Ferndndez-Rivas et al. [1, 2] have recently proposed an efficient way to do sono-
chemistry, controlling cavitation by using micropits grooved on silicon substrates,
following the original idea of Bremond ef al. [3]. At sufficient acoustic pressures,
a bubble cluster is generated in the liquid above each pit. If two pits or more are
present, such clusters tend to attract and merge over a certain pressure amplitude. It
has been shown that merging clusters are associated to a reduction in the radical pro-
duction respect to the case of not interacting clusters [2] and erosion of the reactor
walls [4]. Therefore, in efficient sonochemical reactors design, one should maximize
the number of pits (i.e. of bubbles) but should avoid cluster-merging conditions. The
goal of the present work is to understand the transition between the three possible
behaviors observed in experiments (see Fig. 8.1): individual clusters next to the pit
out of which they were generated (behavior 1), individual clusters pointing towards
the central array of the pits (behavior 2), and clusters migrating towards the center
(behavior 3). The key factor to study these phenomena are the acoustic interactions
between different bubbles, namely the secondary Bjerknes forces [5, 6].

Though these forces have been largely investigated both for bubble pairs [7-12]
and for bubble clouds [13, 14], making an a-priori prediction even on their sign is a
non-trivial matter. The linear theory predicts that two acoustically driven bubbles os-
cillate in phase and attract each other when the driving frequency is greater or lower
than both their resonance frequencies, while they oscillate in counter-phase and repel
with a driving frequency in-between their resonance frequencies [15]. Thus, Bjerk-
nes forces are expected to be attractive for bubbles of equal size [10, 11]. As a first,
qualitative statement, we can therefore expect the cluster-cluster interaction to be at-
tractive (since the pits are identical, the bubbles of each cluster should have similar
sizes). Hence, the fact that clusters merge only above a certain threshold suggests
that the pit-cluster interaction is also attractive, and that the cluster-cluster interaction
must overcome the pit-cluster one to achieve cluster merging. However, it has been
proved by a number of authors that the sign of the Bjerknes forces can be reversed
due to several mechanisms neglected by the classical linear theory, such as the effect
of secondary harmonics [9, 12], the resonance-like behavior of small bubbles (below
their resonance size) near the dynamic Blake threshold [16] and viscous effects dur-
ing translational motion [17]. Several studies of two bubbles interacting in a strong
acoustic field have also shown that bubbles oscillating nonlinearly can form a bound
pair with a steady spacing rather than collide and coalesce, as linear Bjerknes theory
would predict [18-21]. Therefore caution is required when one wishes to understand
the behavior of interacting clusters of bubbles.

In the present work we will investigate the Bjerknes forces acting upon the clus-
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147 mW

Figure 8.1: Example of the three different behaviors of the clusters observed in ex-
periments, at increasing applied power: clusters close to the pits from which their
bubbles originated (behavior 1, top), clusters pointing toward the center (behavior 2,
middle), and clusters migrating toward the center (behavior 3, bottom). The left col-
umn was recorded at normal speed and represents therefore a time average, while the
right column shows single snapshots taken with 7 ns exposure time. The experimen-
tal conditions are the same described in Ref. [2].
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cluster 1 Y cluster 2

|_>

pit 1

mirror 1 mirror 2

Figure 8.2: Sketch of the secondary Bjerknes forces acting upon the bubble and
introduction of our employed notation. F; is the force from cluster 2, F,; > are forces
from the pits and F,;1 > are the forces from the mirror clusters.

ters and their dependence on different parameters, such as the size and the number
of the bubbles, the size of the clusters, the distance between the pits and the driv-
ing pressure. We will show the influence of these forces upon the bubble dynamics
and the radical production and will address the conditions required for the different
transitions, thus providing practical indications for efficient sonochemical sonoreac-
tors design, where one wishes to have the highest possible number of non-interacting
micropits.

8.2 Model

In the experiment of Ref. [2] (Chap. 3), the bubble population is quite polydisperse.
In top view, clusters appear as diffuse circles of radius R, (Fig. 8.1); a side view
reveals that they are in contact with the substrate and have roughly an elliptic shape
(Fig. 7 of Ref. [2]) with a long axis parallel to the substrate, and not much larger than


creo
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the short axis. To simplify the problem, we will assume that each cluster is a sphere of
radius R, in tangential contact with the substrate and we will neglect polydispersity.
We will consider R, as time-invariant for simplicity reasons, although in reality this
holds only on average, for a give applied power, but not in a rigorous sense. We will
also assume that all the bubbles have the same radius R(z) and that the two cluster
have the same number of bubbles N, constant in time.

Each individual bubble in a cluster experiences acoustic interactions from the
pits, from the neighboring bubbles of the same cluster, from the bubbles of the other
cluster, and from all image bubbles, given the presence of the hard silicon substrate
(see Fig. 8.2). We describe the behavior of a single bubble belonging to one of the
clusters by extending the model previously developed in Refs. [22-24] and validated
in [25], to incorporate the effect of the secondary Bjerknes forces upon the pulsation
of the bubble. This model is then coupled with a static force balance in order to study
the switch between the different conditions observed experimentally (see Fig. 8.1).

The model that we adopt for the single bubble is an ODE model based on the
assumptions that the gas inside the bubble is a perfect gas and that the bubble has
a uniform temperature and pressure. The temperature evolution is derived from the
energy equation. Heat and mass transfer are treated with a boundary layer approxi-
mation [22-24]. Evaporation/condensation phenomena are kept into account, as well
as the variation of the transport parameters due to compositional changes of the mix-
ture. A list of 45 chemical reactions is included, with their temperature dependent
chemical kinetics, governed by Arrhenius law. We refer the reader to [24] for a de-
tailed description of these parts of the model, and we concentrate in the following
upon the treatment of the Bjerknes forces.

The radial dynamics of a bubble belonging to cluster 1 is described by means of a
modified Rayleigh-Plesset equation, keeping into account the effect of the secondary
Bjerknes forces on the radial pulsation [14, 26]:

R\ .. R\ .
=BV 2 (1 B\
c 2 3¢

1 R Rp 4VvR 20 @1
= <1+C> (p—po—P)+ 2 -T2 22 Ty,

Here the dots are used for time derivatives, R is the radius of the bubble, c is the
speed of sound, p is the density of the liquid, v its kinematic viscosity, o is the
surface tension, p. the static pressure and P(z) = P,cos®t is the acoustic driving
pressure, with P, the driving amplitude, f = /27 the frequency and T = 1/f the
period of the driving. Tp; is a coupling term expressing the effect of the interaction
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with the other bubbles, both real and imaginary, and the pits
Tgj =T+ T+ T+ T +T +T)y. (8.2)

1.1 and T, are the coupling terms with the bubbles of the same cluster and the other
cluster respectively, 7,,1 > are the coupling terms with the two mirror clusters, 7} »
are the coupling terms with the two pits.

The coupling term 7>_,; between two isolated bubbles, describing the influence
of bubble 2 on the radial oscillations of bubble 1, can be written as [16]

1 .. .
Dot = (R3Rs + 2RoR3) (8.3)

Therefore, the coupling term between one bubble i and the other bubbles of the cloud
to which it belongs becomes

R3R; +2R;R3
T = ZM} (8.4)

J#i ij

in which r;; is the distance between bubbles j and i. Following the approximation
of Yasui et al. [14], i.e. neglecting polydispersity and assuming that the cluster has
constant density, we get:

T.; ~ 2wnR>*(R*R + 2RR?) (8.5)

where R, is the cluster radius and 7 is the number density of bubbles, n ~ 3N /47R>.
The coupling term between the considered bubble of cluster 1 and all the bubbles
of cluster 2 is expressed as in Ref. [14]

Ty dE(RZR' +2RR?), (8.6)
(&

where d, is the distance between the two clouds. This is valid as long as d. > R..The
coupling terms 75,1 » with the two mirror clusters are expressed in a similar way.

In order to model the interaction of the bubble with the pit, we consider the pit as
an effective bubble with the same resonant frequency ®, and damping coefficient 3
as the pit. Although the pit is not a spherical bubble, and may oscillate in a nonlinear
fashion, we will treat it as an harmonic oscillator. This assumption is acceptable, as
long as we showed in Chap. 7 that, in the considered parametric range, large ampli-
tude oscillations present an overall behavior similar to small amplitude oscillations,
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with a slightly lower damping but the same resonance frequency. Hence, we con-
sider the pit like a spherical bubble of radius at rest R), such that @} = 3p../p(R))?,
experiencing linear oscillations [27]: R, = R?,(l +x,) with:

. ) 2. Pa(t)
¥, +2Bx, + W,x, = 7}) (Rg)z . (8.7)

The values of @, and 8 are taken from the recent results of Gelderblom et al.
[28]. These authors have computed the acoustic response of a gas pocket entrapped
in a pit, providing its eigenfrequency and damping coefficient, in two limits: poten-
tial flow, and unsteady Stokes equation. For a cylindrical pit of radius a and height
h, the results mainly depend on the parameter P = ka® Py /ho. In the experiments of
[1,2],a=15um, h=10 um, py = 10° Paand 6 = 0.07 N/m. The temperature was
controlled providing an isothermal behavior within a precision of 1 K [2] and there-
fore k¥ = 1. Hence we compute P = 32, from which @, = 5.82 and B =0.26 in the
Stokes regime, and @, = 6.04 and ﬁ = 0.20 in the potential regime. The dimension-
less frequency is defined as @, = w,+/pa’/c, with a rescaling angular frequency
\/0/pad = 1.46 x 10° rad/s. Hence, taking @, = 6, the resonance frequency of a pit
equals f, = 143 kHz, with f, = ®,/27. In the experiments of [1, 2], it is not clear
which of the two regimes, potential or Stokes, applies best, but it is seen that the nu-
merical values of eigenfrequency and damping differ by only 10%. Moreover, in the
numerical work of Chap. 8 it was shown that in the intermediate regime where both
inertia and viscosity are present, the overall behavior of the pit is generally closer to
the Stokes regime. So, we use hereby the results related to the Stokes regime for the
damping and we take B = 3.8 x 10°s~ .

By substituting R),(¢) inside (8.3), the coupling term between the considered bub-
ble of cluster 1 and pit 1 can be expressed as

Ty = d;( 00 (1+xp) (247 + xpip + 1), (8.8)

where d) is the distance between the bubble and the pit. The coupling term 7},
between the bubble of cluster 1 and pit 2 is expressed correspondingly.

We now turn to the forces experienced by the clusters (see Fig. 8.2). As we
want to study the transition between behavior 1 and behavior 2, we will focus on the
forces acting on the horizontal plane. Hence, we will neglect both the buoyancy and
the primary Bjerknes force, which is directed in the vertical direction, because the
driving pressure is a standing wave with a anti-node on the substrate and a node at
the free water-air surface [29].



174 CHAPTER 8. INTERACTING BUBBLE CLOUDS

In a static equilibrium condition, all the forces acting upon a bubble of cluster 1
with an horizontal component are secondary Bjerknes forces. Such forces are exerted
by the other cluster F}, by the mirror clusters le,z and by the pits }71,172. In order to
derive them, we first consider two oscillating bubbles, of volume 7] and %5, separated
by a distance d much greater than their radii; then bubble 1 experiences a force equal
to [16]:

= PN,

21 = Wé’z—m

with é,_,1 the unit vector pointing from bubble 2 to bubble 1. For bubbles of the

same radius R, this reduces to F5_,; = 47pR3(R2R +2RR?)é,_,1/3d>. Let us first

notice that the forces between bubbles pertaining to the same cluster are responsible

of the cluster cohesion, but are irrelevant to the interaction between different clusters;

hence, we neglect them to assess the stability of behavior 1. Assuming that R, < d,
each bubble of cluster 1 experiences from cluster 2 a force equal to [14, 26]:

(8.9)

P 4npNR? (R’R + 2RR?)

: 0 &1, (8.10)

As d. =d —20 (Fig. 8.2), the horizontal component of F.is given by

A,

fea = a8y

(8.11)

with A, = 4TpNR*(R*R + 2RR?) /3. The forces acting on each bubble of cluster 1
from the mirror clusters, namely ﬁml and F“mz, and their horizontal components can
be expressed in a similar way.

The secondary Bjerknes force acting over each bubble of cluster 1 from pit 1 is
found by substituting the volume of the equivalent bubble corresponding to the pit
¥, = 4R, /3 into Eq. (8.9),

5 inp(Rg)3

rl 2
3 dp

R (1+x,) [26 4+ 5,(1+x,)] 8. (8.12)

Here é,, is the unit vector pointing from the pit to the bubble and dg = h%, + 82, with
h, =R.+h/2. Evenif d, depends on the location of the bubble within its cluster, we
will take d,, as the distance between the pit and the center of the cluster; in practice,
off-centered bubbles within the cluster will experience pit interaction of a different
magnitude, but this will be compensated by the interaction with the other bubbles
forming the cluster. Given &, -é, = o/ dp1, the horizontal component of F},; can be
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calculated from (8.12) as

0

Fpl,x :Ap]

withA,; =4np (Rg)3R3(1 +x,) [2x)% 4+ %, (1 4 xp)] /3. The force F, acting on each
bubble of cluster 1 from pit 2 and its horizontal component are calculated similarly.

8.3 Results

8.3.1 Transition from individual clusters to merging clusters

Ferndndez-Rivas et al. [2] provide an experimental characterization of the number
and size of the bubbles present in the cluster for one, two and three pits, and for three
different powers. They show that the number of bubbles N increases at increasing
power, and that both the average bubble radius (R ~ 10 um) and the most probable
radius (R ~ 3 um) have no significant dependence on the power and on the number
of pits. According to (8.10) and (8.12), in first order, i.e. neglecting the effect of
the other bubbles on R(t), the cluster-cluster force is proportional to N, whereas the
pit-cluster force does not depend on N. The threshold pressure for merging may
thus originate either from the fact that N increases at increasing power or from higher
order effects of bubble oscillations on the secondary Bjerknes forces, contained inside
the terms A, and A..

In order to investigate the transitions between the three different behaviors found
in experiments (see Fig. 8.1), we adopt a quasi-static “adiabatic” approach: we take
0 as a constant over time, representing the displacement of the bubble and therefore
of the cloud from the initial equilibrium position. At each instant, we calculate the
horizontal components of F;, F »1,2 and ﬁm 1,2. We stop the calculation after one cycle,
to match the experimental conditions of Ref. [2], where the bubbles did not survive
after the first collapse. We perform the time averages of the forces over the whole
cycle and we verify whether the following holds

(F) > (Fpix) s (8.14)

where (F)') = (F.) + (Fpox) + (Fm2,x) is the sum of the forces attracting the clusters
towards each other and (-) denotes the time average over the first acoustic cycle.

In order to study the transition between behavior 1 and behavior 2, i.e. the in-
ception of the motion, we consider a small initial horizontal displacement 6 = R
of the bubble from the pit axes and therefore from its rest conditions. The motion
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Figure 8.3: Forces acting upon a bubble of cluster 1 with an initial displacement
0 = Ry respect to its unperturbed condition. Parameters: R. = 100 um, N = 100,
d = 1000 um, Rp = 10 um, f = 200 kHz. The cluster-cluster forces are always
attractive, while the pit-cluster forces become repulsive at high driving, thus favoring
the inception of the motion.

starts once Eq. (8.14) holds. However, this does not imply that the bubble will even-
tually reach the center of the pit array, as we will show below. An example of forces
acting upon a bubble with an initial displacement of § = Ry is given on Fig. 8.3.
Sign inspection shows that the cluster-cluster forces both with the real and the mirror
cluster 2 are always attractive, while the pit-clusters forces become repulsive at high
driving pressure. Above pressures of 150 kPa the data become noisy, probably due
to the nonlinearity of the problem.

In order to study the transition between behavior 2 and behavior 3, i.e. the merg-
ing of the clusters, we consider both F;* and F},; , as a function of 0. The transition
occurs once Eq. (8.14) holds at all 6. As a function of &, (Fji ) has a maximum,
generally (but not always) corresponding to the point § where the pit traps the clus-
ter. The transition is graphically sketched on Fig. 8.4. The blue line corresponds to
merging clusters (behavior 3); the green line corresponds to the situation where (F;")
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Figure 8.4: Average forces (F;) (solid) and (F), x) (dash-dot) acting upon a bubble
of cluster 1, over one acoustic cycle, as function of & for Ry = 10 um, N = 100, R,
= 100 um, d = 1000 um, f = 200 kHz. In green, low pressure case: (F;) is too
weak to pass the barrier constituted by the restoring force (F,; .); the cluster remains
attached to its pit, with a small displacement given by the first intersection of the two
curves. In blue, high pressure case: (F;) > (Fpi ), and the two clusters merge. In

red, critical case, defining the transition between both behaviors. & represents the
maximum displacement of the cluster before transition.

is strong enough to induce the inception of the motion but too weak to overcome the
barrier constituted by the restoring force of the pit. Therefore the cluster remains
attached to its pit, with a small displacement given by the intersection of the two
curves (behavior 2). The red line represents the transition between behavior 2 and
behavior 3, and the corresponding pressure amplitude will be denoted from now on
as P,.

In Fig. 8.5 we plot the driving pressure required for the two transitions, namely
the one for cluster 1 to start moving (dash-dotted line) and the one to overcome the
trapping force of the pit (solid line), as a function of the distance between the pits d.


creo
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Figure 8.5: Calculated driving pressure for transition from behavior 1 to 2, i.e. the
inception of the motion (dash) and from behavior 2 to 3, i.e. the merging of the
clusters (solid), as function of the distance between the pits for a cluster with Ry =
10 um, N =100, R. = 100 um, driven at f =200 kHz. When the pits are too far apart
(d Z 1350 um), no merging is possible.
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Figure 8.6: Electric potential applied to the piezo when the clusters start to merge,
at increasing power (blue), and when they detach going back to their own pits, at
decreasing power (red), as function of the distance between the pits, in the exper-
iment described in Ref.[2]. Increasing voltage corresponds to increasing F,. For
d > 1500 um no merging was observed, no matter P,.
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Figure 8.7: Driving pressure (solid) and maximum displacement of the cluster (dash-
dot) at transition from behavior 2 to behavior 3, as function of the number of bubbles.
Parameters: Ry = 10 um, R, = 100 um, d = 1000 um, f =200 kHz. For N > 50 they
become both almost invariant to a further increase of N.

According to the experimental conditions of Ref. [2], we consider two clusters
with R, =100 um, N = 100, Ry = 10 um. As the distance between the pits increases,
a higher P, is required for merging. For d = 1000 um, we calculated that the tran-
sition occurs at 6 = 94 um, with P, = 270 kPa. In the experiments, the maximum
displacement of the clusters before they detach from the pit and started coalescing
was 8 ~ R, (see Fig. 8.1). Moreover, three pressure values have been measured, cor-
responding to the three different levels of of the applied power (low, medium and
high), 165 kPa, 225 kPa and 350 kPa respectively. The transition occurred between
225 kPa and 350 kPa [2]. Despite the approximations of the model, such as the equal
size and monodispersity of the bubbles inside the cluster and the time-invariance of
both the number of the bubbles and the size of the clusters, we remark that these
values are extremely close to the experimental ones.

Also as a function of the distance between the pits, the numerical results repro-
duce the same trend found in experiments: when d increases, so does P,, until a
limiting value of d, where no merging is possible anymore. In the experiments, this
limit was found at d = 1500 um, in the simulation at d = 1350 um. Once again,
the agreement with the model is remarkably good. The trapping distance & increases
with d.

In Fig. 8.6, we show the voltage applied to the piezo when the clusters merge, at
increasing applied power (blue) and when the clusters detach, coming back to their
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Figure 8.8: Driving pressure (solid) and maximum displacement of the cluster (dash-
dot) at transition from behavior 2 to behavior 3, as function of the radius of the cluster.
Parameters: Ry = 10 um, N = 100, d = 1000 um, f =200 kHz. For bigger clusters
the P, required for merging is lower, as well as the maximum displacement of the
cluster.

own pits, at decreasing applied power (red), for the same setup and experimental
conditions of Ref. [2]. As the applied voltage is directly connected to the driving
pressure P,, we can conclude that the driving pressure required for merging is higher
than the one required to detach the clusters. The theoretical investigation of this
hysteretic behavior is beyond the scope of the present paper and should be addressed
in future works.

For a given Ry and R, P, has a very slight dependence on the number of bubbles
and increasing N reduces P, only until a certain value of N. With Ry = 10 um, R,
=100 and d = 1000 um this happens for N < 50 (see Fig. 8.7). For clusters with a
higher number of bubbles, a further increase of N does not imply a further decrease
of P,. This means that the number of bubbles itself is not what determines the tran-
sition between separated clusters and merging clusters. Thus, we can conclude that,
at medium and high power, the phenomenon is governed by nonlinear oscillations
effects contained inside A, and A, in Egs. (8.11) and (8.13).

However, the number of bubbles can still have an indirect influence on the tran-
sition: given a certain Ry and N, both P, and S are higher when the cloud radius R,
is smaller (see Fig. 8.8). As nonlinear oscillating bubbles tend to form stable pairs
without coalescing, i.e. the bubbles remain at a certain equilibrium distance from
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Figure 8.9: Driving pressure (solid) and maximum displacement of the cluster (dash-
dot) at transition from behavior 2 to behavior 3, as function of the radius of the
bubbles. Parameters: R. = 100 um, N = 100, d = 1000 um, f = 200 kHz. The
P, required for merging presents a minimum with bubbles of 10 um, as well as the
maximum displacement, which is however almost invariant with Ry.

each other [18-21], we can expect that an increase in the number of bubbles will also
lead to an increase in the cluster size and therefore to a lower P, at transition.

The dependence of the pressure amplitude for clusters merging on the bubble size
is non-monotonic. In a range from Ry = 3 to 15 um, the clusters requiring a lower P,
to escape from the pit region are those with Ry = 10 um (see Fig.8.9). Therefore we
can assume that these bubbles will also be the ones to initiate the merging. Never-
theless, the inclusion of inertia and drag, excluded from the present approach, could
shift this minimum towards lower values of R and it should be addressed in a future

paper.

8.3.2 Radical production

In order to investigate the effects of the Bjerknes forces on the radical production, we
consider a cluster with R, = 100 um, N = 100, d = 1000 um, Ry = 3 um, driven at f
=200 kHz and P, = 270 kHz. In Fig. 8.10 we show the radial and thermal evolution
of a bubble of such a cluster. Including the Bjerknes forces (solid line) has the same
effect of adding some damping to the system, as it leads to a lower expansion of
the bubble [14] and therefore to a lower temperature at collapse respect to the case
where Bjerknes forces are not included (solid-dashed line). As the radical production
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Figure 8.10: Radius vs time (top) and temperature vs time (bottom) curves, for a
bubble belonging to cluster 1. The driving amplitude corresponds to the calculated
one for the transition between behavior 2 and behavior 3, both including (solid) and
disregarding (dash-dot) the Bjerknes forces for P, = 270 kPa . The dashed lines
correspond to an isolated bubble, driven at P, = 160 kPa, that equals the “effective
pressure” deduced from the bubble dynamics disregarding Bjerknes forces, just be-
fore transition in Ref. [2]. Parameters: Ryp = 3 um, R, = 100 um, N = 100, f =
200 kHz, d = 1000 um, a =15 um, =10 um.
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Figure 8.11: Number of OH radicals produced as function of time, for a bubble be-

longing to cluster 1 driven at P, = 270 kPa, with (solid) and without (dash-dot) Bjerk-

nes forces, and at P, = 160 kPa without Bjerknes forces (dash). Driving conditions
and dimensions as in Fig. 8.10.

is related to the peak temperature through Arrhenius law, neglecting the Bjerknes
forces induces an overestimate of the produced radicals (see Fig. 8.11). Moreover, the
Bjerknes forces reduce the eigenfrequency of the bubble (see Fig. 8.10), and therefore
induces a further reduction of the radical production, due to the lower number of
collapses per unit time respect to the isolated bubble. From the theoretical point of
view this reduction of the resonance frequency can be predicted using the standard
approach for the calculation of the linear resonance frequency of a bubble [30, 31].
We rewrite the modified Rayleigh-Plesset equation (8.1) by neglecting the effects of
liquid compressibility, surface tension and viscosity, under the hypothesis of linear
oscillations. Considering just the effect of the other bubbles of the same cloud the new
linear frequency will be such to satisfy ®F = 3kp../[pR3(1+3/2NRo/R.)]. With N
varying between 10 and 100, NRy/R, varies between 1 and 10. For Ry = 10 um, we
compute fp = 326, 304, 206, and 82 kHz, respectively for NR/R. = 0 (single bubble),

1, 10, and 100. Given the resonance frequency of the pit f, = 143 kHz and the

driving frequency f =200 kHz, in the linear regime, i.e. at low driving amplitude, an

attractive pit-cluster force is expected, in agreement with what we found. However,

due to nonlinearities, at high driving amplitude, the pit-cluster force can become
repulsive [16, 21] (see Fig. 8.3). In Fig. 8.10 and in Fig. 8.11 we also show the
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Figure 8.12: Maximum number of OH radicals in one acoustic cycle for a bubble of
cluster 1 in the unperturbed position (0 = 0 wum) as function of the distance between
the pits, for different cluster sizes (as indicated in the legend). Parameters: N = 100,
Ro =3 um, f=200kHz, P, = 170 kPa.

dynamic, thermal, and chemical evolution of the same bubble driven at P, = 160 kPa,
without the Bjerknes forces. This driving amplitude corresponds to the “effective
pressure” that we calculated in our previous work for the two pits case, just before
the merging occurred (see Fig. 21 in Ref.[2]). In that case the effective pressure was
extracted from the experimental data by neglecting the Bjerknes forces and using the
bubbles as a pressure sensor through their recorded dynamics. Although there are
some differences between the radial evolution curve of a bubble driven at P, = 270
kPa undergoing Bjerknes forces and an isolated bubble driven at P, = 160 kPa, the
maximum and the minimum radius correspond, thus providing consistency between
the present work and Ref. [2].

The interaction with the other bubbles strongly influences the radical production
even before the inception of the motion. In Fig. 8.12 we show the maximum num-
ber of OH radicals produced per cycle in one bubble of cluster 1 as function of the
distance between the pits. When the distance between the pits decreases, so does the
radical production, because the interaction with the neighboring bubbles becomes
stronger, therefore damping the oscillations and decreasing the temperature at col-
lapse. For the same reason, for a fixed number of bubbles, smaller clouds have lower
radical production (Fig. 8.12), as the bubbles are closer. Similarly, for a fixed cluster
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Figure 8.13: Maximum number of OH radicals in one acoustic cycle for a bubble
of cluster 1 in the unperturbed position (6 = 0 um) as function of the number of
bubbles. Parameters: R, = 100 um, d = 1000 um, Ryp =3 um, f = 200 kHz, P, =
170 kPa.

size, raising the number of bubbles reduces the chemical production (see Fig. 8.13).
However, in the range between 50 and 100 bubbles, there is a local maximum at
N ~ 70. This could provide an explanation to the experimental observation that,
above a certain threshold, a further increase of the applied acoustic power does not
enhance the radical production [2].

8.4 Conclusions

In the present work we theoretically studied the interactions between bubbles clusters
generated from ultrasonically driven silicon etched micropits [2]. We addressed the
transition between the three different behaviors observed in Ref. [2] at increasing
acoustic power: clusters sitting upon their own pit, clusters pointing towards each
other and clusters migrating towards the center point of the pits array. We considered
each cluster as a point object and we examined the secondary Bjerknes forces acting
upon it. These forces depend on the displacement of the cluster from the pit. While
the cluster-cluster force is always attractive, in the considered parametric range, at
high driving the pit-cluster force can also become repulsive at some points very close
the pit, thus favoring the inception of the motion. Given the driving frequency and
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the size of the bubbles and the pits, this is in contrast with the predictions of the linear
theory and it has to be ascribed to the nonlinearity of the phenomenon [9, 16, 21]. We
found that it always exists a barrier, generally coinciding with the maximum attractive
force of the pit, that needs to be overcome for the clusters merging to take place. This
barrier is located at a distance of the order of the cluster radius, in agreement with
experimental observations. The P, required for the cluster to escape the trapping force
of the pit is consistent both with the measured ones and with the effective pressures
that we extracted from the bubble dynamics in our previous work [2]. As the distance
between the pits increases, the P, for merging also increases, up to a certain limiting
distance, where the cluster cannot escape from the pits. For practical purposes, this
could be regarded as an optimal distance between the pits for efficient sonochemical
reactors design, where the number of the pits (i.e. of the bubbles) should be the
maximum possible per unit area, but still avoiding the merging as it lowers the radical
production [2] and enhances the erosion of the reactor walls [4].

We showed that the key to the transition to merging clusters relies on the influ-
ence of the nonlinear bubble oscillations and not on the increasing number of bubbles
at increasing powers, as the P, for merging decreases when N increases, but only until
a certain threshold, after which it basically becomes constant. However, a non-direct
influence of the number of bubbles can be present, because the P, for transition de-
creases with the size of the cluster. As strongly driven bubbles tend to form stable
pairs rather than to coalesce [16], we can expect that increasing the number of gen-
erated bubbles will also increase the clusters radii. This dependence of the cluster
dimension on the number of bubbles should be addressed in future works, for a more
complete understanding of the phenomenon.

We also showed that the bubble size has an influence on the driving pressure
required for merging, which presents a minimum for clusters with bubbles of 10 um.
We can therefore expect that the merging and the consequent generated flow are first
initiated by the bubbles of this size, with some shift towards the smaller bubbles once
that also inertia and drag come into play.

Finally, we examined the sonochemical production and we found that neglecting
the Bjerknes forces will lead to a consistent overestimate of the number of radicals
produced. This happens because the interaction with the neighbors dampens the os-
cillations of the bubble, reducing the temperature at collapse and also the resonance
frequency. Since these interactions exhibit an inverse proportionality with the dis-
tance between the bubbles, smaller size of the clusters and shorter distances between
the pits as well as higher number of bubbles strongly decrease the radical production,
even before the merging takes place. This could be the key to explain the experimen-
tal observation that increasing the power after a certain threshold does not improve
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the sonochemical production. For practical purposes, the efficiency of a sonochem-
ical reactor could benefit from a medium power operating condition instead of high
power and a distance between the pits substantially larger, in order to prevent cluster
merging, which reduces the chemical yield.



188 REFERENCES
References

[1] D. Fernandez Rivas, A. Prosperetti, A. G. Zijlstra, D. Lohse, and H. J. G. E.
Gardeniers, “Efficient sonochemistry through microbubbles generated with mi-
cromachined surfaces”, Angew. Chem. Int. Ed. 49, 9699-9701 (2010).

[2] D. Fernandez Rivas, L. Stricker, A. Zijlstra, H. Gardeniers, D. Lohse, and
A. Prosperetti, “Ultrasound artificially nucleated bubbles and their sonochemi-
cal radical production”, Ultrason. Sonochem. 20, 510-524 (2013).

[3] N. Bremond, M. Arora, C. D. Ohl, and D. Lohse, “Controlled multibubble sur-
face cavitation”, Phys. Rev. Lett. 96, 224501 (2006).

[4] D. Fernandez Rivas, B. Verhaagen, J. R. T. Seddon, A. G. Zijlstra, L.-M. Jiang,
L. W. M. van der Sluis, M. Versluis, D. Lohse, and H. J. G. E. Gardeniers,
“Localized removal of layers of metal, polymer, or biomaterial by ultrasound
cavitation bubbles”, Biomicrofluidics 6, 034114 (2012).

[5] V. Bjerknes, Fields of forces (Columbia University Press, New York) (1906).
[6] T. G. Leighton, The acoustic bubble (Academic Press, London) (1994).

[7] F. G. Blake, “Onset of cavitation in liquids”, Ph.D. thesis, Harvard University
(1949).

[8] L. A. Crum, J. Acoust. Soc. Am. 57, 13631370 (1975).

[9] H. N. Oguz and A. Prosperetti, “A generalization of the impulse and virial the-
orems with an application to bubble oscillations”, J. Fluid Mech. 218, 143-162
(1990).

[10] N. A. Pelekasis and J. A. Tsamopoulos, “Bjerknes forces between two bubbles.
Part 1. Response to a step change in pressure”, J. Fluid Mech. 254, 467-499
(1993).

[11] N. A. Pelekasis and J. A. Tsamopoulos, “Bjerknes forces between two bubbles.
Part 2. Response to an oscillatory pressure field”, J. Fluid Mech. 254, 501-527
(1993).

[12] A. A. Doinikov, “Bjerknes forces between two bubbles in a viscous fluid”, J.
Acoust. Soc. Am. 106, 3305-3312 (1999).

[13] A. A. Doinikov, “Mathematical model for collective bubble dynamics in strong
ultrasound fields”, J. Acoust. Soc. Am. 116, 821-827 (2004).



REFERENCES 189

[14] K. Yasui, Y. Iida, T. Tuziuti, T. Kozuka, and A. Towata, “Strongly interacting
bubbles under an ultrasonic horn”, Phys. Rev. E 77, 016609-1 (2008).

[15] A. Prosperetti, “Bubble phenomena in sound fields: part two”, Ultrasonics 22,
115-124 (1984).

[16] R. Mettin, I. Akhatov, U. Parlitz, C. D. Ohl, and W. Lauterborn, “Bjerknes
forces between small cavitation bubbles in a strong acoustic field”, Phys. Rev.
E 56, 2924-2931 (1997).

[17] A. A. Doinikov, “Viscous effects on the interaction force between two small gas
bubbles in a weak acoustic field”, J. Acoust. Soc. Am. 111, 1602-1609 (2002).

[18] A. A. Doinikov, “Translational motion of two interacting bubbles in a strong
acoustic field”, Phys. Rev. E 64, 026301 (2001).

[19] A. Harkin, T. J. Kaper, and A. Nadim, “Coupled pulsation and translation of
two gas bubbles in a liquid”, J. Fluid Mech. 445, 377-411 (2001).

[20] N. A. Pelekasis, A. Gaki, A. Doinikov, and J. A. Tsamopoulos, “Secondary
bjerknes forces between two bubbles and the phenomenon of acoustic stream-
ers”, J. Fluid Mech. 500, 313-347 (2004).

[21] K. Yoshida, T. Fujikawa, and Y. Watanabe, “Experimental investigation on re-
versal of secondary bjerknes force between two bubbles in ultrasonic standing
wave”, J. Acoust. Soc. Am. 130 135-144, 727-734 (2011).

[22] R. Toegel, S. Hilgenfeldt, and D. Lohse, “The effect of surfactants on single
bubble sonoluminescence”, Phys. Rev. Lett. 84, 2509-2512 (2000).

[23] R. Toegel, S. Hilgenfeldt, and D. Lohse, “Suppressing dissociation in sonolumi-
nescing bubbles: The effect of excluded volume”, Phys. Rev. Lett. 88, 034301
(2002).

[24] R.Toegel and D. Lohse, “Phase diagrams for sonoluminescing bubbles: A com-
parison between experiment and theory”, J. Chem. Phys. 118, 1863 (2003).

[25] L. Stricker, A. Prosperetti, and D. Lohse, “Validation of an approximate model
for the thermal behavior in acoustically driven bubbles”, J. Acoust. Soc. Am.
130, 3243-3251 (2011).

[26] Z. Zeravcic, D. Lohse, and W. van Saarloos, “Collective oscillations in bubble
clouds”, J. Fluid Mech. 680, 114-149 (2011).



190 REFERENCES

[27] A. Prosperetti, “Bubble phenomena in sound fields: part one”, Ultrasonics 22,
69-77 (1984).

[28] H. Gelderblom, A. G. Zijlstra, L. van Wijngaarden, and A. Prosperetti, “Os-
cillations of a gas pocket on a liquid-covered solid surface”, Phys. Fluids 24,
122101 (2012).

[29] A. Zijlstra, “Acoustic surface cavitation”, Ph.D. thesis, University of Twente
(2011).

[30] M. S. Plesset, “Comment on ’Sonoluminescence from water containing dis-
solved gases’ (J. Acoust. Soc. Am. 60, 100-103 (1976))”, J. Acoust. Soc. Am.
62, 470 (1977).

[31] M. S. Plesset and A. Prosperetti, “Bubble dynamics and cavitation”, Annu. Rev.
Fluid Mech. 9, 145-185 (1977).



Conclusions

9.1 Conclusions and outlook

Though sonochemistry is a promising field for industrial application (eg. chemical
synthesis, textile processing, water cleaning), its practical use has always suffered
from low efficiency and difficult controllability. The ultimate task of our project was
to address this two issues. The present work was intended as a theoretical study of a
new generator multibubble sonochemical reactors recently developed by Fernandez-
Rivas et al. [1]. Such a device is based on the principle that cavitation can be en-
hanced by the presence of artificial crevices micromachined over a silicon substrate.
When the substrate is introduced inside the liquid cuvette of a standing-wave sono-
chemical reactor, gas pockets are trapped inside the pits. Through acoustic excitation,
the pits can eject a manifold of bubbles which start to interact with each other, form-
ing clusters and complicate patterns as the power increases. Though they do not
survive more than few acoustic cycles, due to recombination and splitting phenom-
ena, still they have been proved to be sonochemically active [1]. The chemical yield
of this kind of reactors is 10 times higher than the equivalent preexisting reactors thus
representing the state of the art [2, 3].

Even disregarding the interactions between the bubbles, i.e. considering each
bubble as an isolated reactor, the whole process is still very complex, from the mod-
elling point of view. For practical purposes, such as the estimate of the chemical
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production of the bubble population or a parametric study of the optimal operating
conditions, it was necessary to develop a simplified approach. Given the strict inter-
dependence of the temperature and the chemical output, through Arrhenius law, the
main concern was the thermal evolution of the bubble. In Chap. 2 we have validated
a simplified ODE model based on the boundary layer approximation of Ref. [4], by
comparing it with a full PDE model providing the solution to the heat advection-
diffusion equation following the approach of [5]. Though the latter accounts for
the whole temperature distribution both in the bubble and in the liquid, while the
other treats the bubble as a spatially homogeneous system, we have found that, in
the parametric range where shape stability holds, the two models were in very good
agreement.

In Chap. 3 we have characterized a sonochemical reactor of the kind of Ref. [1],
providing the experimental bubble size distributions at different power settings and
number of pits, and their temporal evolution. We used the simplified model validated
in Chap. 2 to give an estimate of the radical production. A major difficulty derived
from the fact that the presence of the bubbles altered the pressure field in a way which
was not measurable with the standard experimental equipment. We overcame this
problem, by fitting the experimental and the calculated PDF of the radii for a range
of pressure amplitudes and minimizing the cumulative squared error between the two.
We used therefore the bubbles as a pressure sensor themselves and we provided an
estimate of the effective forcing pressure that they were feeling. We found that, in
the two- and three-pit cases the effective pressure dropped when bubbles started to
migrate towards the center point of the pit array. Through simulations, we could also
overcome another limitation of the experimental apparatus, giving a description of the
temporal evolution of the smaller bubbles (below observability), compatible with the
experimental PDF. This result was particularly relevant, as calculations showed that
the major part of OH- radical production came from the smaller bubbles (around 5
um radius). As a general trend, the calculated chemical rate increased monotonically
with the effective pressure.

In the attempt to give practical indications for the optimal working conditions of
the sonochemical reactor, in Chap. 4 we developed an extensive parametric study.
We considered each bubble as an isolated reactor and we examined the radical pro-
duction during the early transient, using the model validated in Chap. 2. We chose
this time frame in order to match the operating conditions of the reactor, where the
bubble life was of few acoustic cycles. We found that the chemical production was
strongly affected by two factors: the gas temperature and the composition of the bub-
ble at collapse. We underlined the importance of water vapor, H, and O, dissociating
reactions and their feedback on the temperature. The dissociation of water is strongly
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endothermal and reduces the temperature of the bubble, while the dissociation of Hy
and O, are initil steps of globally strongly exothermal chain reactions which abruptly
increase the temperature, enhancing, in return, other chemical reactions. We found
that, mixtures of H, and O, with the stoichiometric composition of water give origin
to a peak in temperature, whenever the activation energy for H, and O, dissociation
is fulfilled. This reproduces the well known chemical explosive behavior of such
mixtures and provides a strong evidence of the reliability of the adopted model. For
practical purposes, we found that, at low frequency (below 20 kHz), a good strategy
to enhance the radical production is to use stoichiometric mixtures of Hy and O»,
while, at high frequency (around 200 kHz), it is preferable to add a large amount of
argon (~ 90%), to increase the adiabatic index of the mixture and therefore the peak
temperature. From the study of the size of the most active bubbles, we discovered
that another strategy to scale up sonochemistry might be to promote the nucleation
of big bubbles in low frequency reactors and small bubbles in high frequency reac-
tors, for example by changing the size of the pits. We found that the optimal operating
range for frequencies is between 20 kHz and 40 kHz, while for the liquid temperature
heating to 60°C could be beneficial.

In view of a future development of a complete PDE model for a single cavitation
bubble, including temperature and mass distribution as well as evaporation/condensation
and chemical reactions, in Chap. 5 and Chap. 6 we have outlined a preliminary study,
addressing mass diffusion and evaporation. In Chap. 5, we developed a PDE model
for a spherical cavitation bubble including the advection-diffusion equations both for
the heat inside the bubble and for the mass of gas inside the liquid. After valida-
tion by comparison with the analytical solution in a test case, we also compared the
numerical results with the experimental ones for the evolution of a bubble growing
purely by mass diffusion attached to a pit. As our model relies on the assumption
of spherical symmetry, in the very first phases of the nucleation, a direct compari-
son was not possible, due to the strong asymmetry of the process. However, after
sphericity was regained, a very good agreement was found, upon introduction of a
geometric correction inside the model, to account for the disruption of the boundary
layer next to the wall. With this correction, the simulations were able to reproduce
the non-square-root like evolution of the bubble found in the experiments, particu-
larly interesting because it differs from the classical square-root behavior of a bubble
growing purely by mass diffusion in a infinite medium [6].

In Chap. 6 we developed a PDE code including both heat and mass diffusion in-
side the liquid and evaporation/condensation at the bubble wall. We verified that, in
the limiting case of pure gas diffusion and pure vapor bubble, it gave the same results
of Chap. 4 and Ref. [7], respectively. As a further validation, we used such code
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to track the growth of a perfluoropentane (PFP) vapor bubble nucleated and driven
with ultrasound, inside a PFP droplet, contained in a water medium superheated with
respect to the PFP boiling point. We found an agreement within a 10% error between
numerics and experiments. Simulations underlined the fundamental role of gas dif-
fusion during acoustic forcing. Though the bubble dynamics was entirely governed
by evaporation and condensation processes, as the rate between gas and vapor mass
was around 1072, a minimum amount of gas (~10% of the air solubility in PFP) was
necessary in order to allow the bubble to survive the first collapse.

After having addressed the behavior of a single bubble, we turned to the formation
mechanism of the bubbles from the pits. In Chap. 7 we developed a code to track the
dynamics of an air pocket trapped inside a pit, namely the oscillating meniscus from
which the bubbles originate. This code was based on a level set method coupled
to a projection method in order to solve the Navier-Stokes equations in the liquid
and to track the evolution of the velocity and the pressure field around the pit and
the related interface displacement. We validated it by comparison with the analytic
solution both from the mixed boundary problem of the flat meniscus used as test case
and the results of Ref. [8] for the limiting cases of Stokes and potential flow. We
found an agreement within the 5% of error. In the case of free oscillations with the
inclusion of both inertial and viscous effects, the behavior of the pit approached the
Stokes flow behavior, as the hydrostatic pressure increased. Moreover, in the regime
of large amplitude oscillations, the damping was slightly lower respect to the case
of small amplitude oscillations, but the eigenfrequency was the same. In the case of
the forced oscillations with a flat equilibrium condition of the interface, regardless
the initial perturbation, the first mode of oscillation was always selected after very
few cycles and no bubble formation appeared, when the system was driven at the
main resonance. Therefore we concluded that the mechanism of formation of the
bubbles is related to something else than the main resonance and the connected abrupt
response of the system. Possible candidates are the excitation of higher modes and
a mass rectified diffusion-like mechanism [9], through the change of the equilibrium
configuration of the interface that it induces. This aspects will have to be addressed
in future developments.

As a conclusion of the work, in Chap. 8, we studied the collective behavior of the
bubbles generated in the sonochemical reactor, in the two-pit configuration. For such
purpose, we used an extended version of the simplified model validated in Chap. 2,
including the secondary Bjerknes forces acting upon a bubble from the bubbles of
both the same and the opposite cluster, from the pits and from the mirror clouds,
given the presence of the silicon substrate. In particular, we investigated the differ-
ent behaviors observed in the experiments at increasing acoustic power [3]: clusters



9.1. CONCLUSIONS AND OUTLOOK 195

sitting upon their own pits, clusters pointing towards each other and clusters migrat-
ing towards the center of the pit array. As cluster merging is associated to a reduced
sonochemical yield [1], an optimized design of a sonochemical reactor is expected to
avoid this situation, still providing a high number of pits (i.e. of bubbles). We cal-
culated the maximum displacement of the cluster before transition and the required
driving amplitude, verifying that they were in the same range of the experimental
ones and consistent with the pressure values estimated in Chap. 3. As the distance
between the pits increased, the P, for merging also increased, up to a certain limit-
ing distance, where the cluster could not escape the pits. For practical purposes, this
could be regarded as an optimal distance between the pits for efficient sonochemical
reactors design. We showed that the key to the transition relies on the influence of
the nonlinear bubble oscillations while it is almost independent from the number of
bubbles. However, the number of bubbles can have an indirect influence, as the P, for
transition decreases with the size of the cluster and a higher number of bubbles can
easily turn into a larger bubble cluster. This dependence of the cluster dimension on
the number of bubbles should be addressed in future works. We saw that the Bjerknes
forces dramatically decreased the radical production, as they dampened the bubble
oscillations, reducing the temperature at collapse and the resonance frequency. In
particular, reduced size of the clusters and shorter distances between the pits as well
as higher number of bubbles turned into a lower radical production, even before the
merging took place. This could be the key to explain the experimental observation
that increasing the power after a certain threshold does not improve the sonochemi-
cal production but can even reduce it [1]. For practical purposes, the efficiency of a
sonochemical reactor could benefit from a medium power operating condition and a
distance between the pits substantially larger respect to the one required for clusters
merging.

Though the present Thesis has investigated many theoretical aspects of the sono-
chemical reactors presented in Refs. [1-3], still many things remain unclear, such as
the precise mechanism of formation of the bubbles and the complicate interaction
between the clusters in the case with more than two pits. Also in the case of two
pits a high level of simplification has been adopted assuming monodispersity of the
clusters, equal size of the bubbles, constant-time cluster size and constant number
of bubbles. A more complete future development should eliminate these hypothesis.
We have confidence that, through a deeper understanding of the collective bubble
dynamics, a further significant increase in the sonochemical yield could be achieved.
Therefore, before the device can be used in large-scale industrial processes, these
aspects should be clarified.
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Summary

Sonochemistry is the use of cavitation for achieving a chemical conversion. When
microbubbles are driven in the nonlinear regime, localized extreme temperatures (up
to 10000 K) and pressures (up to 1000 bar) can be reached upon collapse, the sur-
rounding liquid remaining ambient, thus giving origin to intriguing phenomena, such
as light emission (sonoluminescence) and high temperature chemical reactions (sono-
chemistry). These reaction products then diffuse outside the bubble and dissolve in-
side the surrounding liquid. Due to their unstable nature, they are highly reactive and
have therefore a vast potential for technological applications, eg. chemical synthesis,
water cleaning, cells disruption and textile processing. However, sonochemical reac-
tors are known to suffer from a lack of efficiency and controllability, which has until
now prevented the large-scale employment of this technology. When we started the
present study the challenge was to improve the efficiency of a sonochemical reactor,
by reducing its dimensions to a micrometric scale, still retaining the possibility to
control the precess. In this frame David Ferndndez Rivas (Ph.D. thesis 2012) devel-
oped a new type of sonochemical microreactor, based on the principle that artificial
micromachined crevices, immersed inside a liquid bath and ultrasonically driven, can
produce a manifold of bubbles. This device turned out to have a chemical yield 10
times higher than the equivalent existing immersed-bath reactors, thus representing
the state of the art. The present Thesis was intended as a complementary theoretical
study to the experimental work developed by Fernandez Rivas (Ph.D. thesis 2012).
Here, we have addressed the main aspects of the observed process, both from the
technological and the fundamental point of view, namely the radical production, the
bubble formation mechanism and the bubble-bubble interaction. The first problem
that we encountered was the high complexity of the phenomenon. Therefore a con-
sistent part of the modelling effort was devoted to the development and the validation
of a simplified model for a single cavitation bubble. This instrument allowed us both
to make predictions for the optimal working ranges of the sonochemical reactor and
to overcome some of the limitations of the experimental apparatus. For example,
using the bubbles themselves as pressure sensors, we were able to estimate the lo-
cal pressure that they were experiencing inside the cloud. This simplified approach
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also allowed us to gain some knowledge on the fundamental mechanisms govern-
ing the sonochemical conversions, such as the endothermal water vapor dissociating
reactions and the highly exothermal chain reactions triggered by the H, and O, disso-
ciation. An interesting result was that small bubbles made of a stoichiometric H>-O»
mixture were found to reproduce the well known macroscopic explosive behavior of
the stoichiometric mixtures. This theoretical prediction will need experimental veri-
fication, in the upcoming future, but, proved true, it would asses a nice link between
the macroscopic and the microscopic phenomena.

Another part of our work was devoted to understand the bubble formation mech-
anism, through the study of the oscillations of a gas pocket trapped inside a micropit.
We saw that, by considering only the dynamics, in the parametric range that we are
concerned with, even in the large amplitude oscillations regime, its behavior remains
close to the small linear oscillations regime, as about the eigenfrequency and the
damping coefficient. For e.g., in the case of large amplitude free oscillations, the de-
formation of the interface does not turn into surface instabilities that could eventually
eject bubbles, but tends towards the first oscillating mode after very few cycles. The
same applies in the case of forced oscillations when the meniscus has a flat equilib-
rium condition and it is driven at the main resonance frequency. Therefore we con-
cluded that the bubble formation mechanism may be connected to other phenomena
than merely the excitation of the main resonance (e.g. a rectified diffusion-like mech-
anism, through the change of the equilibrium condition, or the excitation of higher
modes). This fundamental aspect still needs to be investigated in future studying.

In conclusion, we addressed the bubble dynamics, investigating the conditions for
which the bubble clusters produced from two adjacent pits tend to migrate towards
each other and eventually to merge, as an effect of the secondary Bjerknes force. This
condition has been proved to be associated with a drop of the sonochemical yield and
therefore, in efficient sonochemical reactors, the pits should be enough far to prevent
it. We found that high numbers of bubbles in the clusters should be avoided as well:
though they do not influence the transition to merging clusters, they still provide a
dramatic decrease of the radical production. Therefore medium operating powers
should be preferred, instead of high powers.

We have confidence that the knowledge that we gained with the present work
could help to improve the efficiency of this kind of sonochemical microreactors.
However, a deeper studying is still required to address the fundamentals aspects of the
bubble formation, the flow generated by the bubbles motion as well as their complex
interactions.



Samenvatting

In de sonochemie wordt gebruik gemaakt van cavitatie om chemische reacties te
bewerkstelligen. Wanneer microbellen die worden aangedreven in het niet-lineaire
regime ineenklappen ontstaan locaal zeer hoge temperaturen (tot 10.000K) en drukken
(tot 1000 bar). Deze extreme condities leiden tot bijzondere fenomenen, zoals de
uitzending van licht (sonoluminescentie) en het optreden van chemische reacties
(sonochemie). De reactieproducten diffunderen vervolgens de bel uit en lossen op
in de omringende vloeistof. Doordat deze reactieproducten instabiel zijn, zijn ze
zeer reactief en kunnen ze gebruikt worden voor vele toepassingen zoals chemische
synthese, waterzuivering, het perforeren van celwanden en textielverwerking. Sono-
chemische reactoren kunnen echter nog niet op grote schaal gebruikt worden, omdat
hun efficiéntie en controleerbaarheid te wensen overlaat.

De uitdaging van de huidige studie lag in het vergroten van de efficiéntie van
de sonochemische reactor door zijn afmetingen terug te brengen tot de micrometer-
schaal en tegelijkertijd controle over het proces te houden. Hiertoe is een nieuw type
sonochemische reactor ontwikkeld door David Fernandez Rivas (Ph.D. thesis 2012).
De werking van deze reactor is gebaseerd op kunstmatig aangebrachte holtes op sub-
straten die in water worden ondergedompeld. In deze holtes vormen zich bellen,
die kunnen worden aangedreven met ultrageluid. Deze reactor bleek een chemische
opbrengst te hebben die tien keer zo groot was als die van de bestaande reactors.

Deze thesis is bedoeld als aanvullende theoretische studie om het experimentele
werk van Ferndndez Rivas te complementeren. We hebben aandacht besteed aan de
meest belangrijke processen in de reactor, te weten de productie van radicalen, de
belvorming en de interactie tussen bellen. Hierbij hebben we zowel de toegepaste
als de fundamentele aspecten belicht. Het eerste probleem waar we mee te maken
kregen was de enorme complexiteit van het fenomeen. Om het probleem goed te
kunnen bestuderen hebben we daarom eerst een versimpelde situatie van een enkele
cavitatiebel bekeken. Een groot deel van het werk besloeg het modeleren van deze
enkele bel en het valideren van dit model. Met behulp van dit simpele model konden
we de optimale condities bepalen voor de werking van de sonochemische reactor.
Door bijvoorbeeld de bellen zelf als druksensoren te gebruiken waren we in staat
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om de locale druk te schatten waaraan zij blootstonden. Onze aanpak verschafte
ook meer inzicht in de fundamentele processen achter de chemische reacties, zoals
bijvoorbeeld de endotherme dissociatie van waterdamp en de sterk exotherme ket-
tingreacties volgend op de dissociatie van H, en O,. Een interessant resultaat was
dat kleine bellen bestaande uit het stoichiometrische mengsel H,-O, het bekende
macroscopische explosieve gedrag van stoichiometriche mengsels konden reproduc-
eren. Deze theoretische voorspelling moet nog experimenteel gevalideerd worden,
maar, als het klopt zou het een mooie link tussen macroscopische en microscopische
fenomenen vormen.

Een ander deel van het werk ging over belvormingmechanismen. Hiertoe bestu-
urden we de trillingen van een gasbel die is ingevangen in een microscopische holte.
We zagen dat het dynamische gedrag van de bel, in termen van haar eigenfrequen-
tie en dempingcoéfficiént, dicht in de buurt van het lineaire trillingsregime blijft,
zelfs als de amplitude van de trillingen toeneemt. Voor vrije trillingen met grote
amplitude blijft het grensvlak van de bel stabiel waardoor de uitstoot van bellen niet
plaatsvindt. Hetzelfde geldt in het geval van gedwongen trillingen wanneer de menis-
cus een vlakke evenwichtstoestand heeft en wordt aangedreven met de eerste reso-
nantiefrequentie. We zagen dat de trillingen van het grensvlak na een paar cycli kun-
nen worden beschreven in de eerste oscillatiemodus. Om deze reden concludeerden
we dat er andere fenomenen dan respons op de eerste resonantiefrequentie ten grond-
slag liggen aan belvorming (zoals bijvoorbeeld gerectificeerde diffusie of de excitatie
van hogere modi). Dit fundamentele effect dient nog verder te worden onderzocht.

In dit onderzoek hebben we gekeken naar beldynamica en de condities waaronder
migratie en samensmelting van belclusters uit naburige holtes optreedt ten gevolge
van de secundaire Bjerkneskracht. Deze condities bleken sterk samen te hangen met
een afname van de sonochemische opbrengst. Om deze migratie en samensmelting
te voorkomen en de efficiéntie van de sonochemische reactor te verhogen dienen de
holtes ver genoeg uit elkaar geplaatst te worden. We hebben ontdekt dat het ook
belangrijk is om grote aantallen bellen in de clusters te vermijden: hoewel het geen
invloed heeft op het samensmelten, leidt het wel tot een enorme afname in de produc-
tie van radicalen. Om deze reden is het beter om de reactors bij gematigd vermogen
te laten werken, in plaats van bij hoog vermogen.

De kennis die verkregen is met deze studie kan gebruikt worden om de efficiéntie
van sonochemische reactoren te verhogen. Wel is er vervolgonderzoek nodig om
de fundamentele aspecten van belvorming, de stroming die gegenereerd wordt door
beweging van bellen en de complexe interacties tussen bellen beter te begrijpen.
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